|
[1]D. Yi , Z. Lei , S. Liao and Stan Z. Li, “Deep Metric Learning for Person Re-identification”, ICPRS. 2014. [2]G. Koch, R. Zemel and R. Salakhutdinov, “Siamese Neural Networks for One-shot Image Recognition”, ICML. 2015. [3]Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang and J. Kautz “Joint Discriminative and Generative Learning for Person Re-identification,” CVPR, 2019. [4]Ian J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, Aaron Courville and Y. Bengio, “Generative Adversarial Networks,” arXiv:1406.2661, 2014. [5]Y. Sun, L. Zheng, Y. Yang, Q. Tian and S. Wang, “Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline),” ECCV, 2017. [6]K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CVPR, pp. 770-778, 2016. [7]R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” CVPR, 2014. [8]S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.,” arXiv:1506.01497, 2015. [9]J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” arXiv:1506.02640, 2015. [10]Andrew G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, “T MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861, 2017. [11]Z. Zou, Z. Shi, Y. Guo, and J.Ye, “Object Detection in 20 Years: A Survey Senior Member,” IEEE, 2019. [12]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, “Going Deeper with Convolutions,” arXiv:1409.4842, 2014. [13]D. Bolya, C. Zhou, F. Xiao and Y. Jae Lee, “YOLACT: Real-time Instance Segmentation,” ICCV, 2019. [14]K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” arXiv:1703.06870, 2017. [15]W. Deng, L. Zheng, Q. Ye, Y. Yang, J. Jiao, “Similarity-preserving Image-image Domain Adaptation for Person Re-identification,” arXiv:1811.10551, 2018. [16]E. Ristani, F. Solera, Roger S. Zou, R. Cucchiara, C. Tomasi, “Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking,” ECCV, 2016. [17]J. Y. Zhu, T. Park, P. Isola, A. A. Efros, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks” ICCV, 2017. [18]L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang and Q. Tian, “Scalable Person Re-Identification: A Benchmark,” ICCV, 2015. [19]Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi and T. Huang, “Self-similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-identification,” ICCV, 2019. [20]E. Hoffer and N. Ailon, “Deep metric learning using Triplet network,” arXiv:1412.6622, 2014. [21]L. Wei, S. Zhang, W. Gao, Q. Tian, “Person Transfer GAN to Bridge Domain Gap for Person Re-Identification,” CVPR, 2018. [22]F. Schroff, D. Kalenichenko and J. Philbin, “FaceNet: A Unified Embedding for Face Recognition and Clustering,” IEEE, 2015. [23]M. Ester, H. P. Kriegel, J. Sander, X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” AAAI, 1996. [24]D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980, 2015. [25]S. Yeung, O. Russakovsky, G. Mori, and L. FeiFei, “Accelerating SGD with momentum for over-parameterized learning,” arXiv:1810.13395, 2018. [26]Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi and S. Z. Li, “Salient Color Names for Person Re-identification,” ECCV, 2014
|