|
[1] K. U. Kainer, Magnesium-alloys and technology, Wiley, 2003. [2] 蔡幸甫, “鎂合金在台灣之現況及其發展機會”, pp. 71-76, 2009。 [3] F. Mert, A. Özdemir, K. U. Kainer and N. Hort, "Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy", Transactions of Nonferrous Metals Society of China, Vol. 23, (2013), pp. 66-72. [4] J. Zhang, X. Niua, X Qiu, K, Liu, C. Nan, D. Tang and J. Meng, "Effect of yttrium-rich misch metal on the microstructures, mechanical", Journal of Alloys and Compounds, Vol. 471, (2008), pp. 322-330. [5] S. M. Zhu, M. A. Gibson, J. F. Nie, M. A. Easton and T. B. Abbott, "Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy", Scripta Materialia, Vol. 58, (2007), pp. 477-480. [6] S. Wei, Y. Chen, Y. Tang, X. Zhang, M. Liu, S. Xiao and Y. Zhao, "Compressive creep behavior of Mg–Sn–La alloys", Materials Science and Engineering A, Vol. 508, (2008), pp. 59-63. [7] J. H. Jun, J. M. Kim, B. K. Park, K. T. Kim and W. J. Jung, "Effects of rare earth elements on microstructure and high temperature", Journal of Materials Science, Vol. 40, (2005), pp. 2659-2661. [8] A. Sharma and V. K. Dwivedi, "Comparison of micro structural and mechanical properties of aluminium alloy AA6062 on FSW and TIGW process", Materials Today: Proceedings, Vol. 25, (2020), pp. 903-907. [9] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes and G. B. Thomas, "Patent 9125978.8", (1991). [10] M. Sen, S. shankar and S. Chattopadhyaya, "Investigations into FSW joints of dissimilar aluminum alloys", Materials Today: Proceedings, (2019). [11] O. S. Salih, H. Ou, X. Wei and W. Sun, "Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite", Materials Science and Engineering: A, Vol. 742, (2019), pp. 78-88. [12] X. Xiong, Y. Yanga, J. Li, M. Li, J. Peng , C. Wen and X. Peng, "Research on the microstructure and properties of a multi-pass friction stir processed 6061Al coating for AZ31 Mg alloy", Journal of Magnesium and Alloys,Vol. 7, (2019), pp. 696-706. [13] 賴耿陽, “非鐵金屬材料”, 復漢出版社, 2000。 [14] X. Tiancai, Y. Yan, P. Xiaodong, S. Jiangfeng and P. Fusheng, "Overview of advancement and development trend on magnesium alloy", Journal of Magnesium and Alloys, Vol. 7, (2019), pp. 536-544. [15] J. L. Murray, "The Al-Mg(Aluminum-Magnesium) System", Journal alloy phase diagrams, Vol. 3, (1982), pp. 60-74. [16] F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, and F. Feyerabend, "Degradable biomaterials based on magnesium corrosion.", Current Opinion in Solid State and Materials Science, Vol. 12, (2008), pp. 63-72. [17] A. Wu, and C. Xia, "Study of the microstructure and mechanical properties of Mg-rare earth alloys", Mater and Design, Vol. 28, (2007), pp. 1963-1967. [18]Y. X. Li, G. Zhu, D. Qiu, D. D. Yin, Y. H. Rong, and M. X. Zhang, "The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys", Journal of Alloys Compounds, Vol. 660, (2016), pp. 252-257. [19] A. O. Mostafa and M. Medraj, "Experimental Investigation of the Ce-Mg-Mn Isothermal Section at 723 K (450°C) via Diffusion Couples Technique", Metals & Materials Society and ASM International, Vol. 45, (2014), pp. 3144-3160. [20] A. A. Nayeb-Hashemi and J. B. Clark, "The Ce−Mg (Cerium-Magnesium) system", Journal of phase equilibria, Vol. 9, (1988), pp. 321-327. [21] A. Berche, P. Benigni, J. Rogez and M. C. Record, "Re-investigation of the La–Mg phase diagram", Journal of Thermal Analysis and Calorimetry, Vol. 107, (2012), pp. 797-807. [22] M. Yeganeh and N. Mohammadi, "Superhydrophobic surface of Mg alloys: A review", Journal of Magnesium and Alloys, Vol. 6, (2018), pp. 59-70. [23] W. Xiao, S. Jia, L. Wang, Y. Wu, and L. Wang, "The microstructure and mechanical properties of Mg-Zn-Al-RE alloys", Journal of Alloys Compounds, Vol. 480, (2009), pp. L33-L36. [24] J. F. Nie, and B. C. Muddle, "Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy", Acta Materialia, Vol. 48, (2000), pp. 1691-1703. [25] L. Wencai, Z. Beiping, W. Guohua, Z, Liang, P. Xiang and C. Liang, "High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy", Journal of Magnesium and Alloys, Vol. 7, (2019), pp. 597-604. [26] D. Zhang, Q. Yang, B. Li, K. Guan, N. Wang, B. Jiang, C. Sun, D. Zhang, X. Li, Z. Cao and J. Meng, "Improvement on both strength and ductility of Mg−Sm−Zn−Zr casting alloy via Yb addition", Journal of Alloys and Compounds, Vol. 805, (2019), pp. 811-821. [27] F. Meng, S. Lv, Q. Yang, P. Qin, J. Zhang, K. Guan, Y. Huang, B. Li, N. Hort, X. Liu and J. Meng, "Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase", Journal of Alloys and Compounds, Vol.795, (2019), pp. 436-445. [28] S. M. Mohammed, D. J. Li, X. Q. Zeng and D. L. Chen, "Cyclic deformation behavior of a high zinc-containing cast magnesium alloy", International Journal of Fatigue, Vol. 125, (2019), pp. 1-10. [29] C. Xu, T. Nakata, G. H. Fan, X. W. Li, G. Z. Tang and S. Kamado, "Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr", Journal of Magnesium and Alloys, Vol. 7, (2019), pp. 388-399. [30] S. S. Nene, S. Zellner, B. Mondal, M. Komarasamy, R. S. Brennan and K. C. Cho, "Friction stir processing of newly-designed Mg-5Al-3.5Ca-1Mn (AXM541) alloy: Microstructure evolution and mechanical properties", Materials Science and Engineering: A, Vol. 729, (2018), pp. 294-299. [31] J. Song, J. She, D. Chen and F. Pan, "Latest research advances on magnesium and magnesium alloys worldwide", Journal of Magnesium and Alloys, Vol. 8, (2020), pp. 1-41. [32] L. Z. Wang, J. Shen and N. Xu, "Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints", Materials Science and Engineering: A, Vol. 528, (2011), pp. 7276-7284. [33] P. Venkateswaran and A. P. Reynolds, "Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys", Materials Science and Engineering: A, Vol. 545, (2012), pp. 26-37. [34] P. Xue, D. R. Ni, D. Wang, B. L. Xiao and Z. Y. Ma, "Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints", Materials Science and Engineering: A, Vol. 528, (2011), pp. 4683-4689. [35] Y. Li, L. E. Murr and J. C. McClure, "Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum", Materials Science Engineering: A, Vol. 271, (1999), pp. 213-223. [36] R. S. Mishra and Z. Y. Ma, "Friction stir welding and processing", Materials Science and Engineering: R :Reports, Vol. 50, (2005), pp. 1-78. [37] 張志溢 & 黃志青, “摩擦旋轉攪拌製程之新近發展與應用”, 科儀新知, (2014), pp. 59-73。 [38] K. N. Krishnan, "On the formation of onion rings in friction stir welds", Materials Science and Engineering, Vol. 327, (2002), pp. 246-251. [39] M. Salehi, M. Saadatmand, J. A. mohandesi, "Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing", Ransactions of Nonferrous Metals Society of China, Vol. 22, (2012), pp. 1055-1063. [40] S. Fajardo and G. S. Frankel, "Gravimetric Method for Hydrogen Evolution Measurements on Dissolving Magnesium", Journal of The Electrochemical Society, Vol.162, (2015), pp. C693-C701. [41] 楊聰仁, “腐蝕概論”, Journal of Chinese Corrosion Engineering, Vol. 6, (1992), pp. 57-65。 [42] 田福助, “電化學—理論與應用” , 高立出版社, 2004。 [43] I. M. Gadala, H. M. Ha, P. Rostron and A. Alfantazi, "Formation and Evolution of Oxide/Oxyhydroxide Corrosion Products on Low-Alloy Steel During Exposure to Near-Neutral pH Solutions Containing Oxygen and Nitrate", Journal of Corrosion Science and Engineering, Vol. 73, (2016), pp. 221-237. [44] R. Sekhar, S. A. Jeba and P. Daniel, "Corrosion studies on silver coated second surface mirror reflectors for parabolic trough collectors", Journal of Corrosion Science and Engineering, Vol. 15, (2012), pp. 1-20. [45] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions", National Association of Corrosion Engineers, (1974), p. 139. [46] G. L. Song, "1 - Corrosion electrochemistry of magnesium (Mg) and its alloys", Corrosion of Magnesium Alloys, (2011), pp. 3-65. [47] Y. Luo, Y. Sun, J. Lv, X. Wang, J. Li and F. Wang, "Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom", Applied Surface Science, Vol. 328, (2015), pp. 247-254. [48] G. L. Song and A. Atrens, "Corrosion Mechanisms of Magnesium Alloys", Advanced Engineering Materials, Vol. 1, (1999), pp. 11-33. [49] S. Chen, J. Lia, G. Hu, K. Chen and L. Huang, "Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy", Journal of Alloys and Compounds, Vol. 757, (2018), pp. 259-264. [50] N. Winzer, A. Atrens, W. Dietzel, G. Song and K. U. Kainer , "Transgranular SCC of magnesium", Magnesium: Fundamental Research,Vol. 59, (2007), pp. 49-53. [51] N.Winzer, A. Atrens, W. Dietzel, V. S. Raja, G. Song and K.U. Kainer, "Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys", Materials Science and Engineering: A, Vol.488, (2008), pp. 339-351. [52] B. R. PhD and N. Irannejad, "Chapter 2 - Electrochemical detection techniques in biosensor applications", Electrochemical Biosensors, (2019), pp. 11-43. [53] M. G. Sohail, R. Kahraman, N. A. Alnuaimi, B. Gencturk, W. Alnahhal, M. Dawood and A. Belarbi, "Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels", Construction and Building Materials, (2020), 117205. [54] J. Z. Kong, T. J. Hou, Q. Z. Wang, L. Y. Zhou, L. Yin, F. Zhou, Z. F. Zhou and L. K. Li, "Influence of titanium or aluminum doping on the electrochemical properties of CrN coatings in artificial seawater", Vol. 307, (2016), Surface and Coatings Technology, pp. 118-124. [55] G. L. Song, A. Atrens and D. H. John, "An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys", Magnesium Technology 2001, (2011), pp. 565-572. [56] S. Lebouil, A. Duboin, F. Monti, P. Tabeling, P. Volovitch and K. Ogle, "A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution", Electrochimica Acta, Vol. 124, (2014), pp. 176-182. [57] G. L. Makar and J. Kruger, "Corrosion of magnesium", International Materials Reviews , Vol. 38, (1993), pp. 138-153. [58] S. Ganguly, A. K. Mondal, S. Sarkar, A. Basu, S. Kumar and C. Blawert, "Improved corrosion response of squeeze-cast SiC nanoparticles reinforced AZ91-2.0Ca-0.3Sb alloy", Corrosion Science, Vol. 166, (2020), 108444. [59] F. Baradarani, A. Mostafapour and M. Shalvandi, "Enhanced corrosion behavior and mechanical properties of AZ91 magnesium alloy developed by ultrasonic‐assisted friction stir processing", Materials and Corrosion, Vol. 71, (2020), pp. 109-117. [60] R. Jia, S. Yua, D. Li, T. Zhang, F Wang and C. Zhong, "Study on the effect of mischmetal (La,Ce) on the micro-galvanic corrosion of AZ91 alloy using multiscale methods'', Journal of Alloys and Compounds, Vol. 778, (2019), pp. 427-438.
|