[1] 余福熙,如何選擇及使用紫外線/可視光硬化型接著劑,化工科技 與商情 17 (2001) 9-12.
[2] 张海清,肖浦,戴明之,何勇,聂俊,聚合型光引发剂4-丙烯酰氧基二苯甲酮的光聚合性能研究,影像科学与光化学26(1) (2008) 32-38.
[3] https://zh.wikipedia.org/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2.
[4] A. Endruweit, M.S. Johnson, A.C. Long, Curing of composite components by ultraviolet radiation: A review, polymer composites 27(2) (2006) 119-128.
[5] 劉佩青,感光性樹脂在高透明聚亞醯胺基材上之接著強度及其性質研究,碩士論文,國立國立台北科技大學有機高分子所 (2010).[6] 楊建文,曾兆華,陳用列,光固化塗料及應用,北京:化學工業出版社 (2006) 1-53.
[7] J.P. Fouassier, J. Lalevée, Photoinitiators for polymer synthesis-scope, reactivity, and efficiency, Wiley-VCH Verlag GmbH & Co KGaA: Weinheim (2012).
[8] J. Zhang, M. Frigoli, F. Dumur, P. Xiao, L. Ronchi, B. Graff, F. Morlet-Savary, J.P. Fouassier, D. Gigmes, J. Lalevée, Design of novel photoinitiators for radical and cationic photopolymerizations under near UV and visible LEDs (385, 395, and 405 nm), Macromolecules 47(9) (2014) 2811-2819.
[9] R. F., J. Karlicek, UV-LED: Presented by radtech-the association for UV & EB Technology, RadTech International (2013) 1-69.
[10] Y. Muramoto, M. Kimura, S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp, Semiconductor Science and Technology 29(8) (2014) 084004.
[11] D. Morita, M. Sano, M. Yamamoto, T. Murayama, S.-i. Nagahama, T. Mukai, High output power 365nm ultraviolet light emitting diode of GaN-Free Structure, The Japan Society of Applied Physics 41 (2002) 1434–1436.
[12] N.S. Allen, Photoinitiators for UV and visible curing of coatings: mechanisms and properties., Journal of Photochemistry and Photobiology A: chemistry 100(1-3) (1996) 101-107.
[13] C. Decker, Kinetic study and new applications of UV radiation curing, Macromolecular Rapid Communications 23(18) (2002) 1067-1093.
[14] 蔡仲倫,樹枝狀水性PU壓克力樹脂之光硬化動力學與機械性質討論,碩士論文,國立國立台北科技大學有機高分子所 (2010).[15] 王德海,紫外光固化材料-理論與應用,北京科學出版社 (2001) 106-140.
[16] 周洺偉,陽離子型紫外光硬化樹脂之研究,碩士論文,國立國立台北科技大學有機高分子所 (2007).[17] 黃錫裕,UV Curable PU樹脂之光硬化,碩士論文,國立國立台北科技大學有機高分子所 ( 2004).[18] X. Wu, J. Zhang, C. Wu, G. Wang, P. Jiang, Study on tribological properties of UHMWPE irradiated by electron beam with TMPTMA and TPGDA as crosslinking agents, Wear 297(1) (2013) 742-751.
[19] 王心麟,鏈轉移劑與活性稀釋劑對UV光固化塗料物性之研究,碩士論文,國立高雄應用科技大學化學工程與材料工程所 (2017).[20] 楊修銘,以丙烯酸酯製備陽離子型紫外光硬化塗料之研究,碩士論文,國立高雄應用科技大學化學工程與材料工程所 (2016).[21] D.S. Esen, N. Arsu, J.P. Da Silva, S. Jockusch, N.J. Turro, Benzoin type photoinitiator for free radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry 51(8) (2013) 1865-1871.
[22] J. Segurola, N. Allen, M. Edge, I. Roberts, Photochemistry and photoinduced chemical crosslinking activity of acrylated prepolymers by several commercial type I far UV photoinitiators, Polymer Degradation and Stability 65 (1999) 153-160.
[23] E. Andrzejewska, D. Zych-Tomkowiak, M. Andrzejewski, G.L. Hug, B. Marciniak, Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone, Macromolecules 39(11) (2006) 3777-3785.
[24] R.S. Davidson, The chemistry of photoinitiators—some recent developments, Journal of Photochemistry and Photobiology A: Chemistry 73(2) (1993) 81-96.
[25] Z. Kecici, S. Babaoglu, G. Temel, Methacrylated benzophone as triple functional compound for the synthesis of partially crosslinked copolymers, Progress in Organic Coatings 115 (2018) 138-142.
[26] J. Pierre Fouassier, J. Lalevée, Three-component photoinitiating systems: towards innovative tailor made high performance combinations, RSC Advances 2(7) (2012) 2621.
[27] T. Hayashi, K. Maeda, Preparation of a new phototropic substance, Bulletin of the Chemical Society of Japan 33(4) (1960) 565-566.
[28] D.M. White, J. Sonnenberg, Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals, Journal of the American Chemical Society 88(16) (1966) 3825-3829.
[29] R. Dessauer, Photochemistry history and commercial applications of hexaarylbiimidazole, Amsterdam, London:Elsevier (2006).
[30] A. Kikuchi, T. Iyoda, J. Abe, Electronic structure of light-induced lophyl radical derived from a novel hexaarylbiimidazole with π-conjugated chromophore, Chemical Communications (14) (2002) 1484-1485.
[31] F. Iwahori, S. Hatano, J. Abe, Rational design of a new class of diffusion-inhibited HABI with fast back-reaction, Journal of Physical Organic Chemistry 20(11) (2007) 857-863.
[32] K. Mutoh, K. Shima, T. Yamaguchi, M. Kobayashi, J. Ab, Photochromism of a naphthalene-bridged imidazole dimer constrained to the “Anti” conformation, Organic Letters 15(12) (2013) 2938-2941.
[33] S. Hatano, T. Horino, A. Tokita, T. Oshima, J. Abe, Unusual negative photochromism via a short-lived imidazolyl radical of 1,1'-binaphthyl-bridged imidazole dimer, J Am Chem Soc 135(8) (2013) 3164-72.
[34] X. Jiang, J. Yin, Y. Murakami, M. Kaji, Novel photosensitizer and methoxy styryl pyridines for photoradical initiator system, Journal of Photopolymer Science and Technology 22 (2009) 351-356.
[35] 朱晓丹,王克敏,钱晓春,聂俊,马贵平,丙烯酸酯单体的邻氯代六芳基双咪唑复合光引发聚合动力学研究,辐射研究与辐射工艺学报 30(5) (2012) 268-273.
[36] Y. Shi, J. Yin, M. Kaji, H. Yori, Synthesis of a novel hexaarylbiimidazole with ether groups and characterization of its photoinitiation properties for acrylate derivatives, Polymer Engineering & Science 46(4) (2006) 474-479.
[37] T.M. Sheets, Photoimaging composition containing admixture of leuco dye and 2, 4, 5-triphenylimidazolyl dimer, EP0215453A2 (1986) 1-15.
[38] 胡建琪,应明友,钱晓春,吴士荣,张胜文,刘仁,江金强,刘晓亚,六芳基双咪唑复合光引发体系的研究及其在液态光致抗蚀剂中的应用, 信息记录材料 9(4) (2008) 46-51.
[39] Z. Kucybala, M. Pietrzak, J. Poczkowski, L.-A. Linden, J.F. Rabek, Kinetic studies of a new photoinitiator hybrid system based on camphorquinone-N-phenylglicyne derivatives for laser polymerization of dental restorative and stereolithographic (3D) formulations, Polymer 37 (1996) 4585–4591.
[40] Y.-C. Chen, Y.-T. Kuo, Photocuring kinetic studies of TMPTMA monomer by type II photoinitiators of different weight ratios of 2-ChlorohexaarylBiimidazole (o-Cl-HABI) and NPhenylglycine (NPG), Journal of Photopolymer Science and Technology 31 (2018) 487-492.
[41] A.D. Liu, A.D. Trifunac, V.V. Krongauz, Photodissociation of hexaarylbiimidazole. 2. Direct and sensitized dissociation, The Journal of Physical Chemistry 96(1) (1992) 207-211.
[42] X.Allonas, J.P.Fouassier, M.Kaji, M.Miyasaka, T.Hidaka, Two and three component photoinitiating systems based on coumarin derivatives, Polymer Composites 42(18) (2001) 7627-7634.
[43] 张永兴,胡建琪,张胜文,刘仁,江金强,刘晓亚,BCIM曾感體系紫外光引發MMA聚合動力學及其應用, 江南大學學報 (自然科學版) 8(1) (2009) 104-107.
[44] R. Dessauer, Dimers derived from unsymmetric 2,4,5-triphenylimidazole compounds as photoinitiators, CA1137348A (1982) 1-19.
[45] M. Robert, M. Keever, Photoimaging composition containing admixture of leuco dye and 2,4,5-triphenylimidazoly dimmer, US4622286 (1986) 1-11.
[46] 王宝湖,曹万荣,申屠宝卿,六芳基双咪唑的感光性能研究,信息记录材料 11(5) (2010) 17-21.
[47] B.-h. Wang, W.-r. Cao, B. Shentu, High efficient photoinitiator of hexaphenylbisimidazole derivatives with substituents in the 2-Phenyl Ring, Journal of Photopolymer Science and Technology 24 (2011) 611-615.
[48] Y. Shi, B. Wang, X. Jiang, J. Yin, M. Kaji, H. Yori, Photoinitiation properties of heterocyclic hexaarylbiimidazoles with high UV-vis absorbance, Journal of Applied Polymer Science 105(4) (2007) 2027-2035.
[49] C. Jing, G. Ding, X. Qin, G. Peng, H. Huang, J. Wang, S. Zhang, H. Li, Z. Luo, F. Gao, New near UV photoinitiators containing benzophenone part for photoinitiating polymerization of methyl methacrylate, Progress in Organic Coatings 110 (2017) 150-161.
[50] Y. Shirota, Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications, Journal of Materials Chemistry 15(1) (2005) 75-93.
[51] G.-S. Liou, N.-K. Huang, Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials, Polymer 47(20) (2006) 7013-7020.
[52] C.-W. Chang, G.-S. Liou, Stably anodic green electrochromic aromatic poly(amine–amide–imide)s: Synthesis and electrochromic properties, Organic Electronics 8(6) (2007) 662-672.
[53] A. Cravino, S. Roquet, P. Leriche, O. Aleveque, P. Frere, J. Roncali, A star-shaped triphenylamine pi-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells, Chemical Communication (13) (2006) 1416-1418.
[54] Y. Song, C.-a. Di, W. Xu, Y. Liu, D. Zhang, D. Zhu, New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs, Journal of Materials Chemistry 17(42) (2007) 4483-4491.
[55] X. Cao, F. Jin, Y.-F. Li, W.-Q. Chen, X.-M. Duan, L.-M. Yang, Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators, New Journal of Chemistry 33(7) (2009) 1578-1582.
[56] F. Gao, N.D. Hu, H.R. Li, S.T. Zhang, Novel triphenylamine-based two-photon absorption dyes including benzophenone parts, Chinese Chemical Letters 20(11) (2009) 1279-1282.
[57] K. Suzuki, Y. Hori, T. Kobayashi, A new hybrid phosphine ligand for palladium-catalyzed amination of aryl halides, Advanced Synthesis & Catalysis 350(5) (2008) 652-656.
[58] B. Schlummer, U. Scholz, Palladium-catalyzed C-N and C-O coupling-a practical guide from an industrial vantage point, Advanced Synthesis & Catalysis 346(13-15) (2004) 1599-1626.
[59] N.M. Patil, A.A. Kelkar, Z. Nabi, R.V. Chaudhari, Novel CuI/tributyl phosphine catalyst system for amination of aryl chlorides, Chemical Communications (19) (2003) 2460.
[60] W. Ren, H. Zhuang, Q. Bao, S. Miao, H. Li, J. Lu, L. Wang, Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices, Dyes and Pigments 100 (2014) 127-134.
[61] G. Seybold, Industrielle bedeutung der Vilsmeier–Haack‐Reaktion in der farbstoffchemie, Journal fur praktische Chemie Chemiker-Zeitung 338 (1996) 392-396.
[62] S. Suresh, H. Zengin, B.K. Spraul, T. Sassa, T. Wada, D.W. Smith, Synthesis and hyperpolarizabilities of high temperature triarylamine-polyene chromophores, Tetrahedron Letters 46(22) (2005) 3913-3916.
[63] 黃惟聖,Gd0.18Ca0.82Fe2As2 之電子順磁共振光譜研究,碩士論文 ,國立中興大學物理所 (2014).[64] E. Bakhshandeh, S. Bastani, M.R. Saeb, C. Croutxé-Barghorn, X. Allonas, High-performance water-based UV-curable soft systems with variable chain architecture for advanced coating applications, Progress in Organic Coatings 130 (2019) 99-113.
[65] C. Liang-liang, Z. Yong, S. Wen-fang, Photoinitiating characteristics of benzophenone derivatives as type II macromolecular photoinitiators used for UV curable resins, CHEM. RES. CHINESE UNIVERSITIES 27(1) (2011) 145-149.
[66] S. Kothavale, N. Sekar, Methoxy supported, deep red emitting mono, bis and tris triphenylamine-isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity, Dyes and Pigments 136 (2017) 116-130.
[67] M. Che, E. Giamello, Chapter 5 Electron paramagnetic resonance, 57 (1990) B265-B332.
[68] C. Ley, C. Carré, A. Ibrahim, X. Allonas, Application of high performance photoinitiating systems for holographic Grating Recording, in Holographic Materials and Optical Systems (2017).
[69] D. Rehm, A. Weller, Kinetics of fluorescence quenching by electron and H‐atom transfer, Israel Journal of Chemistry 8(2) (1970) 259-271.
[70] J. Zhang, J. Lalevée, X. Mou, F. Morlet-Savary, B. Graff, P. Xiao, N-Phenylglycine as a versatile photoinitiator under near-UV LED, Macromolecules 51(10) (2018) 3767-3773.
[71] Y.C. Chen, Y.T. Kuo, T.H. Ho, Photo-polymerization properties of type-II photoinitiator systems based on 2-chlorohexaaryl biimidazole (o-Cl-HABI) and various N-phenylglycine (NPG) derivatives, Photochem Photobiol Sci 18(1) (2019) 190-197.
[72] J. Wei, R. Lu, F. Liu, Effect of photosensitive groups on the photoefficiency of polymeric photoinitiators, Journal of Polymer Research 18(5) (2010) 1001-1008.