|
[1]G. Iori, F. Heyer, V. Kilappa, (2018), “BMD-based assessment of local porosity in human femoral cortical bone”, Bone, 114, 50-61. [2]王盈錦,(2002),生物醫學材料,合計圖書出版社,臺北市。 [3]崔福齋、馮慶玲,(2004),生物材料學,清華學出版社,北京。 [4]俞耀庭、張興樑,(2000),生物醫用材料,天津大學出版社,天津。 [5]鄭玉峰、李莉,(2009),生物用材料學,西北工業大學出版社,西安。 [6]Huijuan Tang, Andrell Hosein, Monica Mattioli-Belmonte, (2021), “Traditional Chinese Medicine and orthopedic biomaterials: Host of opportunities from herbal extracts”, Materials Science & Engineering C, 120, 111760. [7]洪炳南,(1983),生物材料在醫學上的應用,科學月刊第167期,第880-883頁。 [8]沈家瑞、劉昭麟,(2016),極具前景的生醫材料,科學月刊第553期,第46-49頁。 [9]L. L. Hench, J. M. Polak, (2002), “Third-generation biomedical materials”, Science, 295, 1014-1017. [10]Roya Sarkhosh-Inanlou, Vahid Shafiei-Irannejad, Sajjad Azizi, Abolghasem Jouyban, Jafar Ezzati-Nazhad Dolatabadi, Ahmad Mobed, Bashir Adel, Jafar Soleymani, Michael R. Hamblin, (2021), “Applications of scaffold-based advanced materials in biomedical sensing”, TrAC Trends in Analytical Chemistry, 143, 116342。 [11]Somasundaram Prasadh, Santhosh Suresh, Vaishnavi Ratheesh, Raymond Wong, Manoj Gupta, (2021), “Biocompatibility of Metal Matrix Composites Used for Biomedical Applications”, Encyclopedia of Materials: Composites, 474-501. [12]A.V. Okulov, A.S. Volegov, J. Weissmüller, J. Markmann, I.V. Okulov, (2018), “Dealloying-based metal-polymer composites for biomedications”, Scripta Materialia, 146, 15, 290-294. [13]Mitsuo Niinomi, Masaaki Nakai, Junko Hieda, (2012), “Development of new metallic alloys for biomedical applications”, Acta Biomaterialia, 8, 11, 3888-3903. [14]Mitsuo Niinomi, (2008), “Mechanical biocompatibilities of titanium alloys for biomedical applications”, Journal of the Mechanical Behavior of Biomedical Materials, 1, 1, 30-42. [15]Rongfeng Li, Liu Wang, Deying Kong, Lan Yin, (2018), “Recent progress on biodegradable materials and transient electronics”, Bioactive Materials, 3, 3, 322-333. [16]Berna Özkale, Mahmut Selman Sakar, David J. Mooney, (2021), “Active biomaterials for mechanobiology”, Biomaterials, 267, 120497. [17]S. Sankaranarayanan, M. Gupta, (2021), “Emergence of god’s favorite metallic element: Magnesium based materials for engineering and biomedical applications”, Materials Today: Proceedings, 39, 1, 311-316. [18]Vijay Kumar Bommala, Mallarapu Gopi Krishna, Ch Tirumala Rao, (2019), “Magnesium matrix composites for biomedical applications: A review”, Journal of Magnesium and Alloys, 7, 1, 72-79. [19]J. Chevalier, L. Gremillard, (2009), “Ceramics for medical applications: A picture for the next 20 years”, Journal of the European Ceramic Society, 29, 7, 1245-1255. [20]Xiaogang Wang, Yuanman Yu, Luli Ji, Zhen Geng, Jing Wang, Changsheng Liu, (2021), “Calcium phosphate-based materials regulate osteoclast-mediated osseointegration”, Bioactive Materials, 6, 12, 4517-4530. [21]Pei-Yi Hsu, Hsiao-Chun Kuo, Man-Lin Syu, Wei-Hsing Tuan, Po-Liang Lai, (2020), “A head-to-head comparison of the degradation rate of resorbable bioceramics”, Materials Science and Engineering: C, 106, 110175. [22]X. Wang, et al., (2018), “Influence of surface structures on biocompatibility of TiO2/HA coatings prepared by MAO”, Materials Chemistry and Physics, 215, 339-345. [23]Chandramani Goswami, Amar Patnaik, I.K. Bhat, Tej Singh, (2021), “Mechanical physical and wear properties of some oxide ceramics for hip joint application: A short review”, Materials Today: Proceedings, 44, 6, 4913-4918. [24]黃世偉,(2010),高分子材料與醫療器材,科學發展,第455期,第14-19頁。 [25]S. Arumugam, Y. Ju, (2021), “Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone – a review”, Materials Today Chemistry, 20, 100420. [26]S. Pranav Adithya, D. Saleth Sidharthan, R. Abhinandan, K. Balagangadharan, N. Selvamurugan, (2020), “Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering”, International Journal of Biological Macromolecules, 164, 1960-1972. [27]Baocheng Zhang, Yuan Xu, Sitian Ma, Linfeng Wang, Changjun Liu, Weilin Xu, Jiawei Shi, Weihua Qiao, Hongjun Yang, (2021), “Small-diameter polyurethane vascular graft with high strength and excellent compliance”, Journal of the Mechanical Behavior of Biomedical Materials, 121, 104614. [28]Marta Musioł, Wanda Sikorska, Henryk Janeczek, Wojciech Wałach, Anna Hercog, Brian Johnston, Joanna Rydz, (2018), “(Bio)degradable polymeric materials for a sustainable future – part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life”, Waste Management, 77, 447-454. [29]庄景、徐世崇,(2003),聚己内酯多元醇的合成和應用,上海塗料,41.5,17-18。 [30]M. M. Avedesian, N. Magnesium, (1999), “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, Mater. Infotmation Society, 14-15. [31]Yiming Jin, Carsten Blawert, Hong Yang, Björn Wiese, Jan Bohlen, Di Mei, Min Deng, Frank Feyerabend, Regine Willumeit, (2021), “Deteriorated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing”, Journal of Materials Science & Technology, 92, 214-224. [32]Mohammad Shahin, Khurram Munir, Cuie Wen, Yuncang Li, (2019), “Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives”, Acta Biomaterialia, 96, 1-19. [33]Xiaogang Wang, Yuanman Yu, Luli Ji, Zhen Geng, Jing Wang, Changsheng Liu, (2021), “Calcium phosphate-based materials regulate osteoclast-mediated osseointegration”, Bioactive Materials, 6, 12, 4517-4530. [34]National Institutes of Health(NIH), (2021), “Dietary Supplement Fact Sheet: Magnesium”, Office of Dietary Supplements. [35]Rebecca B. Costello, A. Rosanoff, (2020), “Chapter 21 - Magnesium”, Present Knowledge in Nutrition (Eleventh Edition), 349-373. [36]Xintao Zhang, Pengzhou Huang, Guanwei Jiang, Mengdi Zhang, Fei Yu, Xueping Dong, Liping Wang, Yuhui Chen, Wentao Zhang, Yong Qi, Wenqiang Li, Hui Zeng, (2021), “A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis”, Materials Science and Engineering: C, 121, 111868. [37]Min-jie Liang, Cun Wu, Yong Ma, Jiaojing Wang, Mengyao Dong, Binbin Dong, Hai-hong Liao, Jincheng Fan, Zhanhu Guo, (2021), “Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy”, Materials Science and Engineering: C, 119, 111521. [38]Robert B. Heimann, (2021), “Magnesium alloys for biomedical application: Advanced corrosion control through surface coating”, Surface and Coatings Technology, 405, 126521. [39]Samia Tighiouaret, Abdelkader Hanna, Hiba Azzeddine, Lyacine Rabahi, Achour Dakhouche, François Brisset, Anne-Laure Helbert, Thierry Baudin, Djamel Bradai, (2021), “On the evolution of microstructure, texture and corrosion behavior of a hot-rolled and annealed AZ31 alloy”, Materials Chemistry and Physics, 267, 124598. [40]Z. Shi, F. Cao, G.L. Song, M. Liu, A. Atrens, (2013), “Corrosion behaviour in salt spray and in 3.5%NaCl solution saturatedwith Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd”, Corros. Sci., 76, 98-118. [41]C. S. Neves, I. Sousa, M. A. Freitas, L. Moreira, C. Costa, J. P. Teixeira, S. Fraga, E. Pinto, A. Almeida, N. Scharnagl, M.L. Zheludkevich, M.G.S. Ferreira, J. Tedim, (2021), “Insights into corrosion behaviour of uncoated Mg alloys for biomedical applications in different aqueous media”, Journal of Materials Research and Technology, 13, 1908-1922. [42]Zhang Chunyan, Cheng Lan, Lin Jiajia, Sun Dongwei, Zhang Jun, Liu Huinan, (2021), “ In vitro evaluation of degradation, cytocompatibility and antibacterial property of polycaprolactone/hydroxyapatite composite coating on bioresorbable magnesium alloy”, Journal of Magnesium and Alloys, 2213-9567. [43]A. S. Gnedenkov, S. V. Lamaka, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, I. M. Imshinetskiy, M. L. Zheludkevich, S. V. Gnedenkov, (2021), “Control of the Mg alloy biodegradation via PEO and polymer-containing coatings”, Corrosion Science, 182, 109254. [44]Jingyao Li, Jian Li, Qingyang Li, Haili Zhou, Guomin Wang, Xiang Peng, Weihong Jin, Zhentao Yu, Paul K. Chu, Wei Li, (2021), “Titania-zinc phosphate/nanocrystalline zinc composite coatings for corrosion protection of biomedical WE43 magnesium alloy”, Surface and Coatings Technology, 410, 126940. [45]Faleh Tamimi, Zeeshan Sheikh, Jake Barralet, (2012), “Dicalcium phosphate cements: Brushite and monetite”, Acta Biomaterialia, 8, 2, 474-487. [46]C. Moseke, U. Gbureck, (2010), “Tetracalcium phosphate: Synthesis, properties and biomedical applications”, Acta Biomaterialia, 6, 10, 3845-3823. [47]P. Choudhury, D.C. Agrawal, (2012), “5 - Hydroxyapatite (HA) coatings for biomaterials”, In Woodhead Publishing Series in Biomaterials, Nanomedicine, Woodhead Publishing, 84-127. [48]Antonia Ressler, Andreja Žužić, Irena Ivanišević, Nikhil Kamboj, Hrvoje Ivanković, (2021), “Ionic substituted hydroxyapatite for bone regeneration applications: A review”, Open Ceramics, 6, 100122. [49]Jinxing Cao, Ruizhe Lian, Xiaohong Jiang, (2020), “Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility”, Applied Surface Science, 515, 146069. [50]Purnendu Nasker, Aniruddha Samanta, Sudip Rudra, Arijit Sinha, Anoop K. Mukhopadhyay, Mitun Das, (2019), “Effect of fluorine substitution on sintering behaviour, mechanical and bioactivity of hydroxyapatite”, Journal of the Mechanical Behavior of Biomedical Materials, 95, 136-142. [51]Bahaa Abdulrazzaq Jerri Al-Bakhsh, Farhad Shafiei, Atieh Hashemian, Kiana Shekofteh, Behnam Bolhari, Marjan Behroozibakhsh, (2019), “In-vitro bioactivity evaluation and physical properties of an epoxy-based dental sealer reinforced with synthesized fluorine-substituted hydroxyapatite, hydroxyapatite and bioactive glass nanofillers”, Bioactive Materials, 4, 322-333. [52]Sumi Kang, Jeong Taeg Seo, Sung-Ho Park, Il Young Jung, Chan Young Lee, Jeong-Won Park, (2019), “Qualitative analysis on crystal growth of synthetic hydroxyapatite influenced by fluoride concentration”, Archives of Oral Biology, 104, 52-59. [53]Sandleen Feroz, Abdul Samad Khan, (2020), “7 - Fluoride-substituted hydroxyapatite”, Handbook of Ionic Substituted Hydroxyapatites, Woodhead Publishing, 175-196. [54]E. Iyyappan, P. Wilson, K. Sheela, R. Ramya, (2016), “Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods”, Materials Science and Engineering: C, 63, 554-562. [55]Ronghai Zhu, Ranbo Yu, Jianxi Yao, Dan Wang, Jiajun Ke, (2008), “Morphology control of hydroxyapatite through hydrothermal process”, Journal of Alloys and Compounds, 457, 1-2, 555-559. [56]Guoming Huang, Chun-Hua Lu, Huang-Hao Yang, (2019), “Chapter 3 - Magnetic Nanomaterials for Magnetic Bioanalysis”, In Micro and Nano Technologies, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, 89-109. [57]Purnendu Nasker, Mayuri Mukherjee, Shashi Kant, Sucheta Tripathy, Arijit Sinha, Mitun Das, (2018), “Fluorine substituted nano hydroxyapatite: Synthesis, bio-activity and antibacterial response study”, Ceramics International, 44, 17, 22008-22013. [58]A. Joseph Nathanael, D. Mangalaraj, S. I. Hong, Y. Masuda, Y. H. Rhee, H. W. Kim, (2013), “Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method”, Materials Chemistry and Physics, 137, 3, 967-976. [59]吳溪煌、田福助,(2014),電化學-理論與應用,高立圖書有限公司,第435-443頁。 [60]Hossein Maleki-Ghaleh, M. Hossein Siadati, Ali Fallah, Ali Zarrabi, Ferdows Afghah, Bahattin Koc, Elaheh Dalir Abdolahinia, Yadollah Omidi, Jaleh Barar, Ali Akbari-Fakhrabadi, Younes Beygi-Khosrowshahi, Khosro Adibkia, (2021), “Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering”, Chemical Engineering Journal, 426, 131321. [61]K. L. Montoya-Cisneros, J.C. Rendón-Angeles, Z. Matamoros-Veloza, A. Matamoros-Veloza, K. Yanagisawa, (2017), “Low-temperature densification of Mg-doped hydroxyapatite fine powders under hydrothermal hot processing conditions”, Ceramics International, 43, 15, 11907-11919. [62]Jie Jin, Shuwei Zhou, Hejie Duan, (2018), “Preparation and properties of heat treated FHA@PLA composition coating on micro-oxidized AZ91D magnesium alloy”, Surface and Coatings Technology, 349, 50-60. [63]Liping Wang, Janak L. Pathak, Dongliang Liang, Ningying Zhong, Hongbing Guan, Mianjia Wan, Guohou Miao, Zhengmao Li, Linhu Ge, (2020), “Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications”, International Journal of Biological Macromolecules, 142, 366-375. [64]Alireza Rajabnejadkeleshteri, Armin Kamyar, Mehrdad Khakbiz, Zahra Lotfi bakalani, Hamideh Basiri, (2020), “Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications”, Microchemical Journal, 153, 104485.
|