|
[1]O. Almora, L. G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, and G. Garcia-Belmonte, “Superior Performance of V2O5 as Hole Selective Contact Over Other Transition Metal Oxides in Silicon Heterojunction Solar Cells,” Solar Energy Materials And Solar Cells, Volume 168, 2017, p. 221. [2]L. G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition Metal Oxides as Hole-Selective Contacts in Silicon Heterojunctions Solar Cells,” Solar Energy Materials and Solar Cells, Volume 145, Part 2, 2016, p. 109. [3]S. Sanyal, S. Dutta, M. Ju, K. Mallem, S. Panchanan, C. Eun-chel, Y. H. Cho, and J. Yi, “Hole Selective Contacts: A Brief Overview,” Current Photovoltaic Research, Volume 7, Issue 1, 2019 , p. 9. [4]P. Qin, Q. He, D. Ouyang, G. Fang, W. C. H. Choy, and G. Li, “Transition Metal Oxides as Hole-Transporting Materials in Organic Semiconductor and Hybrid Perovskite Based Solar Cells,” Science China Chemistry, Volume 60, 2017, p. 472. [5]T. Zhang, 2019,“Transition Metal Oxides and Their Application as Hole-Selective Contacts for Silicon Solar Cells,”, UNSW, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering. [6]L. Fengchao,2020, “Silicon Heterojunction Solar Cells with Transition Metal Oxide as the Hole Transport Layers”, Aalborg Universitetsforlag, Department of Chemistry and Bioscience the Faculty of Engineering and Science. [7]B. Yusuf, M. R. Hashim, M. Z. Pakhuruddin, and M. M. Halim, “Effect of Solution Flow Rate on the Physical Properties of Spray Pyrolyzed MoO3 Thin Films as Silicon-Based Heterojunction Device,” Micro and Nanostructures, Volume 164, 2022, p.107111. [8]C. Battaglia, S. M. D. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey,“ Silicon Heterojunction Solar Cell with Passivated Hole Selective MoOx Contact ” Applied Physics Letters, Volume 104, 2014, p. 113902. [9]Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So,” Energy Level Evolution of Air and Oxygen Exposed Molybdenum Trioxide Films,” Applied Physics Letters, Volume 96, 2010, p.243307. [10]S. Essig, J. Dreon, E. Rucavado, M. Mews, T. Koida, M. Boccard, J. Werner, J. Geissbühler, P. Loper, M. Morales-Masis, L. Korte, S. D. Wolf, and C. Balllif, “Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts for Silicon Photovoltaics,” Solar RRL, Volume 2, Issue 4, 2018, p. 1700227. [11]R. Yang, D. Wang, M. Jeng, K. Ho, and D. Wang, “Stable CdTe Thin Film Solar Cells with A MoOx Back-Contact Buffer Layer,” Progress in Photovoltaics: Research and Applications, Volume 24, Issue 1, 2015, p. 59. [12]K. Singh, D. K. Singh, and V. K. Komarala, “Numerical Simulations of Carrier‑Selective Contact Silicon Solar Cells: Role of Carrier‑Selective Layers Electronic Properties,” Journal of Computational Electronics, Volume 20, 2021, p.1815. [13]Z. Xiao-Wen, J. Li, L. Zhang, L. Hua-Ping, J. Xue-Yin, Z, Wen-Qing, and Z. Zhi-Lin, “Improved Performance of Si-Based Top-Emitting Organic Light-Emitting Device Using MoOx Buffer Layer,” Synthetic Metals, Volume 160, Issues 7–8, 2010, p. 788. [14]J. Shi, L. Shen, Y. Liu, J. Yu, J. Liu, L. Zhang, Y. Liu, J. Bian, Z. Liu, and F. Meng, “MoOx Modified ITO/a-Si:H(p) Contact for Silicon Heterojunction Solar Cell Application,” Materials Research Bulletin, Volume 97, 2018, p. 176. [15]S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, and D. Li, “Interfacial Behavior and Stability Analysis of P-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOx/Metal Contacts,” Solar RRL, Volume 3, Issue 11, 2019, p. 1900274. [16]F. Ali, N. Khoshsirat, J. L. Duffin, H. Wang, K. Ostrikov, J. M. Bell, and T. Tesfamichael, “Prospects of E-beam Evaporated Molybdenum Oxide as A Hole Transport Layer for Perovskite Solar Cells,” Journal of Applied Physics, Volume 122, Issue 12, 2017, p. 123105. [17]M. Bivoura, F. Zahringera, P. Ndione, and M. Hermlea, “Sputter-Deposited WO¬x and MoOx for Hole Selective Contacts,” Energy Procedia, Volume 124, 2017, p. 400. [18]R. Singh, R. Sivakumar, S. K. Srivastava, and T. Som, “Carrier Selective MoOx/Si Heterojunctions: Role of Thickness,” Applied Surface Science, Volume 564, 2021, p. 150316. [19]U. Akın, and H. Safak, “Thickness Dependence of Dispersion Parameters of the MoOx Thin Films Prepared Using the Vacuum Evaporation Technique,” Journal of Alloys and Compounds, Volume 647, 2015, p. 146. [20]M. Plakhotnyuk, 2018, “Nanostructured Heterojunction Crystalline Silicon Solar Cells with Transition Metal Oxide Carrier Selective Contacts,” DTU Nanotech. [21]M. T. Greiner, M. G. Helander, W. Zhi-Bin, T. Wing-Man, and L. Zheng-Hong, “Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films,” Journal of Physical Chemistry C, Volume 114, 2010, p.19777. [22]X. Yin, Y. Guo, H, Xie, W. Que, and L. B. Kong, “Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells,” Sol. RRL, Volume 3, 2019, p. 1900001. [23]Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hub, and Z. Tana, “Recent Advances and Comprehensive Insights of Nickel Oxide in Emerging Optoelectronic Devices,” Sustainable Energy & Fuels, Volume 4, Issue 9, 2020, p. 4415. [24]W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, and W. Chen, “Performance Improvement of Inverted Polymer Solar Cells Thermally Evaporating Nickel Oxide as An Anode Buffer Layer,” Solar Energy Materials and Solar Cells, Volume 98, 2012, p. 212. [25]E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy Level Alignment in PCDTBT:PC70BM Solar Cells: Solution Processed NiOx for Improved Hole Collection and Efficiency,” Organic Electronics, Volume 13, Issue 5, 2012, p. 744. [26]M. Nayak, S. Mandal, A. Pandey, S. Mudgal, S. Singh, and V. K. Komarala, “Nickel Oxide Hole-Selective Heterocontact for Silicon Solar Cells: Role of SiOx Interlayer on Device Performance” Solar RRL, Volume 3, Issue 11, 2019, p.1900261. [27]M. Labed, N. Sengouga, A. Meftah, A. Meftah, and Y. S. Rim, “Study on the Improvement of the Open-Circuit Voltage of NiOx/Si Heterojunction Solar Cell,” Optical Materials, Volume 120, 2021, p. 111453. [28]F. Menchini, M. L. Grilli, T. Dikonimos, A. Mittiga, L. Serenelli, E. Salza, R. Chierchia, and M. Tucci, “Application of NiOx Thin Films as P-type Emitter Layer in Heterojunction Solar Cells,” physica status solidi c, Volume 13, Issue 10-12, 2016, p. 1006. [29]A. M. Elseman, S. Sajid, A. E. Shalan, S. A. Mohamed, and M. M. Rashad, “Recent Progress Concerning Inorganic Hole Transport Layers for Efficient Perovskite Solar Cells,” Applied Physics A,Volume 125, 2019, p.476. [30]K. Su-Kyung, S. Hae-Jun, K. Do-Hyung, C. Dong-Hyeok, N. Seung-Ju, K. Suk-Cheol, and K. Han-Ki, “Comparison of NiOx Thin Film Deposited by Spin-Coating or Thermal Evaporation for Application as A Hole Transport Layer of Perovskite Solar Cells,” RSC Advances, Volume 10, 2020, p. 43847. [31]B. A. Nejand, V. Ahmadi, and H. R. Shahverdi, “New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells,” ACS Applied Materials & Interfaces, Volume 7, 2015, p. 21807.
|