|
1.Govinda Kapusetti, Namdev More, and Mounika Choppadandi, Introduction to Ideal Characteristics and Advanced Biomedical Applications of Biomaterials. 2019: p. 171-204. 2.Venina dos Santos, R.N.B., Michele Savaris, Biomaterials: Characteristics and Properties. 2017: p. 5-15. 3.Qizhi Chen and G.A. Thouas, Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: p. 1-57. 4.宋信文、陳松清, 生醫材料簡介. 5.Saeid Ghanavati, M.R.S., Mansoor Farzam, Iman Danaee, Effects of Surface Treatment on Corrosion Resistance of 304L and 316L Stainless Steel Implants in Hank’s Solution. Iranian Journal of Oil & Gas Science and Technology, 2016. 5: p. 65-72. 6.ein, C.a., 生物醫用材料. 2015. 7.Marc Long and H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998. 19: p. 1621—1639. 8.Niinomi, M., Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 2007. 29(6): p. 992-1000. 9.Sebastian Bauer, et al., Engineering biocompatible implant surfaces. Progress in Materials Science, 2013. 58(3): p. 261-326. 10.Yiqing Huang and J. Wang, Mechanism of and factors associated with the loosening of the implant abutment screw: A review. J Esthet Restor Dent, 2019. 31(4): p. 338-345. 11.Michelle D. Kofron, et al., In vitro assessment of connection strength and stability of internal implant-abutment connections. Clin Biomech (Bristol, Avon), 2019. 65: p. 92-99. 12.Yang Liu and J. Wang, Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck. Arch Oral Biol, 2017. 83: p. 153-160. 13.Bickford, J.H., Introduction to the Design and Behavior of Bolted Joints. 2007. 14.Dandan Xia, et al., Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values. Biomed Mater Eng, 2014. 24(6): p. 2143-9. 15.Beatriz Pardal-Peláez and J. Montero, Preload loss of abutment screws after dynamic fatigue in single implant-supported restorations. A systematic review. J Clin Exp Dent, 2017. 9(11): p. e1355-e1361. 16.Ryusuke SHINOHARA, Kazuhiko UEDA, and a.F. WATANABE, Influence of the difference between implant body and screw materials on abutment screw loosening. Dent Mater J, 2019. 38(1): p. 150-156. 17.Rodolfo Bruniera Anchieta, et al., Effect of abutment screw surface treatment on reliability of implant-supported crowns. Int J Oral Maxillofac Implants, 2014. 29(3): p. 585-92. 18.Pietro Montemezzi, et al., Dental Implants with Different Neck Design: A Prospective Clinical Comparative Study with 2-Year Follow-Up. Materials (Basel), 2020. 13(5). 19.Hironobu Matsuno, et al., Biocompatibility and osteogenesis of refractory metal implants,titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001. 22: p. 1253-1262. 20.N Coen, et al., Particulate debris from a titanium metal prosthesis induces genomic instability in primary human fibroblast cells. Br J Cancer, 2003. 88(4): p. 548-52. 21.Ryuichiro Kumazawa, et al., Effects of Ti ions and particles on neutrophil function andmorphology. Biomaterials, 2002. 23: p. 3757-3764. 22.Biagio Moretti, et al., Peripheral neuropathy after hip replacement failure: is vanadium the culprit? The Lancet, 2012. 379(9826): p. 1676. 23.Ambreen Mirza, et al., Aluminium in brain tissue in familial Alzheimer's disease. J Trace Elem Med Biol, 2017. 40: p. 30-36. 24.Bondy, S.C., Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology, 2016. 52: p. 222-9. 25.Brett Russell Levine, et al., Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials, 2006. 27(27): p. 4671-81. 26.Michael Collins, et al., Trabecular Metal ™ Dental Implants: Overview of design and developmental research. Materials Science, 2010. 27.Ming-Tzu Tsai, et al., Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films. Surface and Coatings Technology, 2016. 303: p. 268-276. 28.Akiko Nagai, et al., Response of osteoblast-like MG63 cells to TiO2 layer prepared by micro-arc oxidation and electric polarization. Journal of the European Ceramic Society, 2012. 32(11): p. 2647-2652. 29.K. Kieswetter, et al., The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med, 1996. 7(4): p. 329-45. 30.Yin-Yu Chang, Jia-Hao Zhang, and H.-L. Huang, Effects of Laser Texture Oxidation and High-Temperature Annealing of TiV Alloy Thin Films on Mechanical and Antibacterial Properties and Cytotoxicity. Materials (Basel), 2018. 11(12). 31.Kristappagari Manjunath, et al., Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity. Journal of Materials Research and Technology, 2018. 7(1): p. 7-13. 32.Michael S. Shuler, Michael D. Rooks, and J.R. Roberson, Porous tantalum implant in early osteonecrosis of the hip: preliminary report on operative, survival, and outcomes results. J Arthroplasty, 2007. 22(1): p. 26-31. 33.Heng-Li Huang, et al., Antibacterial and biological characteristics of tantalum oxide coated titanium pretreated by plasma electrolytic oxidation. Thin Solid Films, 2019. 688: p. 137268. 34.Alireza Meidanchi and A. Jafari, Synthesis and characterization of high purity Ta2O5 nanoparticles by laser ablation and its antibacterial properties. Optics & Laser Technology, 2019. 111: p. 89-94. 35.張銀祐, 陰極電弧活化沉積含金屬類鑽碳膜之製程與特性研究. 國立中興大學材料工程學研究所碩士論文, 2004. 36.蔡定平, 真空技術與應用. 國家實驗研究院儀器科技研究中心出版, 2001. 37.陳柏諺, 不鏽鋼基材Ti-Al-Si-N薄膜之高溫氧化性能. 明道大學材料科學與工程研究所碩士論文, 2009. 38.Thompson, C.V., Stress Evolution During Volmer-Weber Growth of Thin Films. 39.Xiaochuan Tan, et al., Study on the effect of film formation process and deposition rate on the orientation of the CsI:Tl thin film. Journal of Crystal Growth, 2017. 476: p. 64-68. 40.Khatibi, A., Growth and Heat Treatment Studies of Al-Cr-O and Al-Cr-O-N Thin Films. 2013. 41.S. Mukherjee and D. Gall, Structure zone model for extreme shadowing conditions. Thin Solid Films, 2013. 527: p. 158-163. 42.John A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670. 43.Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090. 44.Barbara Kwiecińska, Sławomira Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203. 45.Yiyi Wang, A.S.Ö., Gözde Özaydin, Karl F. Ludwig, Jr., Anirban Bhattacharyya, Theodore D. Moustakas, Hua Zhou, Randall L. Headrick, and D. Peter Siddons, Real-time synchrotron x-ray studies of low- and high-temperature nitridation of c-plane sapphire. Phys. Rev. B74, 2006. 46.Boriana Mihailova and U. Bismayer, Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures. 2012. 47.張育唐,陳擖然, 接觸角(Contact Angle). 國科會高瞻自然科學教學資源平台. 48.Hongyan Wu, et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167. 49.S. Sathish Kumar, et al., Investigations on the effect of substrate temperature on the properties of reactively sputtered zirconium carbide thin films. Journal of Alloys and Compounds, 2017. 695: p. 1020-1028. 50.Shuo Yuan, et al., In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance. Vacuum, 2020. 176: p. 109327. 51.G. Abadias, et al., Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me=Zr, Ta) hard coatings. Thin Solid Films, 2013. 538: p. 56-70. 52.Yung-I Chen, et al., Preparation and annealing study of TaNx coatings on WC-Co substrates. Applied Surface Science, 2011. 257(15): p. 6741-6749. 53.Yin-Yu Chang and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 2019. 374: p. 1120-1127. 54.Khalil Ibrahim, et al., Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: Experimental studies and finite element modeling. Journal of Alloys and Compounds, 2018. 750: p. 451-464. 55.Zue-Chin Chang and J.-Y. Liang, Oxidation Behavior and Structural Transformation of (CrTaTiVZr)N Coatings. Coatings, 2020. 10(4): p. 415. 56.鄭宇傑, 林., 單層及多層金屬薄膜與p型銻化鎵接觸之特性分析. 2017. 57.S. Thanka Rajan, A. Bendavid, and B. Subramanian, Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Colloids Surf B Biointerfaces, 2019. 173: p. 109-120. 58.Luisa F. Cueto, et al., On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates. Materials Characterization, 2005. 55(4-5): p. 263-271. 59.D. Gonbeau, C.G., G. Pfister-Guillouzo, and G.M.a.R.D. A. Levasseur, XPS study of thin films of titanium oxysulfides Surface Science 1991. 254: p. 81-89. 60.A. Darlinski and J. Halbritter, Angle-resolved XPS Studies of Oxides at NbN, NbC, and Nb Surfaces. SURFAC'E AND INTERFACE ANALYSIS, 1987. 10: p. 223-237. 61.C. MORANT, J.M.S., L. GALAN, L. SORIANO, F. RUEDA AN XPS STUDY OF THE INTERACTTION OF OXYGEN WITH ZIRCONIUM Surface Science 1989. 218: p. 331-345. 62.Gruzalski, G.R. and D.M. Zehner, Defect states in substoichiometric tantalum carbide. Phys Rev B Condens Matter, 1986. 34(6): p. 3841-3848. 63.Jun-Ying Zhang and I.W. Boyd, Thin tantalum and tantalum oxide films grown by pulsed laser deposition. Applied Surface Science, 2000. 168(1-4): p. 234-238. 64.Thomas, J.H. and L.H. Hammer, A Photoelectron Spectroscopy Study of CF4/H2 Reactive Ion Etching Residue on Tantalum Disilicide 1989. 136. 65.P.Moreau, et al., Electronic structures and charge transfer in lithium and mercury intercalated titanium disulfides. Journal of Physics and Chemistry of Solids, 1996. 57(6-8): p. 1117-1122. 66.R. FONTAINE, R.C., L. FEVE et M. J. GUITTET Déplacement chimique ESCA dans la série des oxydes du niobium. Journal of Electron Spectroscopy and Related Phenomena, , 1977. 10: p. 349-357. 67.G. E. McGUIRE, G. K. SCHWEITZER, and T.A. CARLSON, Study of Core Electron Binding Energies in Some Group IIIa, Vb, and VIb Compounds. Inorganic Chemistiy, 1973. 12: p. 2450-2453. 68.Arfelli, M., Cossu, G., Mattogno, G., Ferragina, C., & Massucci, M. A. , X-ray Spectroscopic Characterization of Cu2÷-Phenanthroline Complexes Intercalated in a-Zirconium Phosphate. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1990. 9: p. 161-170. 69.Klimov, V.D.V., A. A.; Pronin, I. S. , Reaction of Atomic Titanium with a PF3 Matrix at 77 K: Cryochemical Synthesis of the Novel Compound TiF2PF3. 1991. 61: p. 2166. 70.A.E. HUGHES and B.A. SEXTON, COMMENTS ON THE USE OF IMPLANTED Ar AS A BINDING ENERGY REFERENCE Journal of Electron Spectroscopy and Related Phenomena, 1990. 50: p. c15-c18. 71.Y.V. Salyn, V.I.N., A.G. Makarova, G.N. Kuznetsova and R.J.I. Chem., 1978. 23: p. 458. 72.R. Ali, M. Sebastiani, and E. Bemporad, Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Materials & Design, 2015. 75: p. 47-56. 73.Yung-I Chen, Jun-Hsin Lin, and C.-C. Chou, Oxidation resistance and mechanical properties of Ta–Al–N coatings. Surface and Coatings Technology, 2016. 303: p. 41-47. 74.Ay Ching Hee, et al., Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc deposition. Bioelectrochemistry, 2018. 122: p. 32-39. 75.Mohammad Velashjerdi, M.S., Majid Zarezadeh Mehrizi, Preparation of crack-free TiO2 coating by active screen plasma annealing method. Materials Today Communications, 2020: p. 101316. 76.Satendra Kumar, et al., Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials Science and Engineering: C, 2009. 29(6): p. 1942-1949. 77.Janine Karla F.S.Braz, et al., Live endothelial cells on plasma-nitrided and oxidized titanium: An approach for evaluating biocompatibility. Mater Sci Eng C Mater Biol Appl, 2020. 113: p. 111014. 78.Rolando A.Gittens, et al., A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater, 2014. 10(7): p. 2907-18. 79.Y. H. Lu, et al., Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear, 2007. 262(11-12): p. 1372-1379. 80.Jiri Nohava, et al., Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures. Tribology International, 2015. 81: p. 231-239. 81.Jianliang Li, et al., Frictional properties of silver over-coated on surface textured tantalum interlayer at elevated temperatures. Surface and Coatings Technology, 2019. 365: p. 189-199. 82.Haddad Arabi Bulaqi, et al., Assessment of preload, remaining torque, and removal torque in abutment screws under different frictional conditions: A finite element analysis. J Prosthet Dent, 2019. 121(3): p. 548 e1-548 e7. 83.Audrey Allion-Maurer, et al., Plasma-deposited nanocomposite polymer-silver coating against Escherichia coli and Staphylococcus aureus: Antibacterial properties and ageing. Surface and Coatings Technology, 2015. 281: p. 1-10. 84.W. Ahmed, Z. Zhai, and C. Gao, Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio, 2019. 2: p. 100017. 85.Jun Wu, Kyosuke Ueda, and T. Narushima, Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity. Mater Sci Eng C Mater Biol Appl, 2020. 109: p. 110599. 86.Madeeha Riaz, et al., In Vitro antibacterial activity of Ta2O5 doped glass-ceramics against pathogenic bacteria. Journal of Alloys and Compounds, 2018. 764: p. 10-16. 87.Niinomi, M., Recent Metallic Materials for Biomedical Applications. Metallurgical and Materials Transactions, 2002. 33. 88.B. Subramanian, et al., A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surface and Coatings Technology, 2011. 205(21-22): p. 5014-5020.
|