|
[1] Schodek, D. L., Ferreira, P., & Ashby, M. F. (2009). Nanomaterials, nanotechnologies and design: an introduction for engineers and architects.Butterworth-Heinemann, Rosenberg [2] Feynman, R. (1991). There's plenty of room at the bottom. Science, 254(5036), 1300-1301. [3] Itzykson, C., & Zuber, J. B. (2012). Quantum field theory. Courier Corporation [4] Dayal, S., & Burda, C. (2007). Surface effects on quantum dot-based energy transfer. Journal of the American Chemical Society, 129(25), 7977-7981. [5] Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials, 22(10), 1039-1059. [6] Wen, S., & Huang, P. (2012). Principles of tribology. John Wiley & Sons,251- 252,347-348 [7] Komanduri, R., & Hou, Z. B. (2001). Thermal modeling of the metal cutting process—Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. International Journal of Mechanical Sciences, 43(1), 89-107. [8] Blok, H. (1937). Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proc. Instn. Mech. Engrs.(General discussion on lubrication and lubricants),2, 222. [9] Peng, L. F., Mao, M. Y., Fu, M. W., & Lai, X. M. (2016). Effect of grain size on the adhesive and ploughing friction behaviours of polycrystalline metals in forming 104 process. International Journal of Mechanical Sciences, 117, 197-209 [10] Harrison, J. A., White, C. T., Colton, R. J., & Brenner, D. W. (1995). Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films, 260(2), 205-211. [11] Chantrenne, P. (2008). Multiscale simulations: application to the heat transfer simulation of sliding solids. International Journal of Material Forming, 1(1), 31- 37. [12] Lin, E. Q., Niu, L. S., Shi, H. J., & Duan, Z. (2012). Molecular dynamics simulation of nano-scale interfacial friction characteristic for different tribopair systems. Applied Surface Science, 258(6), 2022-2028. [13] Chen, K., Wang, L., Chen, Y., & Wang, Q. (2017). Molecular dynamics simulation of interfaces and microstructure evolution during high-speed sliding. Numerical Heat Transfer, Part A: Applications, 72(7), 519-535. [14] Hayashi, K. (2021). Phononic mechanism determining threshold speed of wearless sliding nanofriction clarified based on molecular dynamics simulations. Computational Materials Science, 188, 110156. [15] Guo, F., Zhang, J., Chen, Z., Zhang, M., Pei, J., & Li, R. (2021). Investigation of friction behavior between tire and pavement by molecular dynamics simulations. Construction and Building Materials, 300, 124037. [16] Peng, L. F., Mao, M. Y., Fu, M. W., & Lai, X. M. (2016). Effect of grain size on the adhesive and ploughing friction behaviours of polycrystalline metals in forming process. International Journal of Mechanical Sciences, 117, 197-209 [17] Qiu, S., Zhou, Z., Dong, J., & Chen, G. (2001). Preparation of Ni nanoparticles and 105 evaluation of their tribological performance as potential additives in oils. J. Trib., 123(3), 441-443. [18] Yu, H. L., Yi, X. U., Shi, P. J., Xu, B. S., Wang, X. L., & Qian, L. I. U. (2008). Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China, 18(3), 636-641. [19] Zhang, B. S., Xu, B. S., Xu, Y., Gao, F., Shi, P. J., & Wu, Y. X. (2011). Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel–steel contacts. Tribology International, 44(7-8), 878-886. [20] Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., & Jung, M. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124-e127. [21] Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224-232. [22] Sánchez-López, J. C., Abad, M. D., Kolodziejczyk, L., Guerrero, E., & Fernández, A. (2011). Surface-modified Pd and Au nanoparticles for anti-wear applications. Tribology International, 44(6), 720-726. [23] Kolodziejczyk, L., Martinez-Martinez, D., Rojas, T. C., Fernández, A., & SánchezLópez, J. C. (2007). Surface-modified Pd nanoparticles as a superior additive for lubrication. Journal of Nanoparticle Research, 9(4), 639-645. [24] Chin˜ as-Castillo, F., & Spikes, H. A. (2003). Mechanism of action of colloidal solid dispersions. J. Trib., 125(3), 552-557. [25] Gersten, J. I., & Smith, F. W. (2001). The physics and chemistry of materials (pp. 106 757-67). New York: Wiley. [26] Shewmon, P. G. (1969). Transformations in Metals. McGraw-Hill. [27] Wong, T. I., Han, S., Wu, L., Wang, Y., Deng, J., Tan, C. Y. L., ... & Zhou, X. (2013). High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. Lab on a Chip, 13(12), 2405-2413. [28] Tong, R. T., Han, B., Quan, Z. F., & Liu, G. (2019). Molecular dynamics simulation of friction and heat properties of Nano-texture GOLD film in space environment. Surface and Coatings Technology, 358, 775-784. [29] Liu, X., Liu, Z., & Wei, Y. (2015). Ploughing friction and nanohardness dependent on the tip tilt in nano-scratch test for single crystal gold. Computational Materials Science, 110, 54-61. [30] de Kraker, A., van Ostayen, R. A., Van Beek, A., & Rixen, D. J. (2007). A multiscale method modeling surface texture effects, 221-230. [31] Zhu, P., Hu, Y., Fang, F., & Wang, H. (2012). Multiscale simulations of nanoindentation and nanoscratch of single crystal copper. Applied Surface Science, 258(10), 4624-4631. [32] Hou, Y., Wang, X., Sun, W., & Wang, L. (2018). A multiscale DEM-FEM approach to investigate the tire–pavement friction. International Journal of Pavement Engineering, 19(5), 399-406. [33] Tran, A. S., Fang, T. H., Tsai, L. R., & Chen, C. H. (2019). Friction and scratch characteristics of textured and rough surfaces using the quasi-continuum method. Journal of Physics and Chemistry of Solids, 126, 180-188. 107 [34] Nguyen Trong, D., Van Long, C., & Ţălu, Ş. (2021). The structure and crystallizing process of NiAu alloy: a molecular dynamics simulation method. Journal of Composites Science, 5(1), 18. [35] Safina, L. R., Baimova, J. A., & Mulyukov, R. R. (2019). Nickel nanoparticles inside carbon nanostructures: atomistic simulation. Mechanics of Advanced Materials and Modern Processes, 5(1), 1-11. [36] Imafuku, M., Sasajima, Y., Yamamoto, R., & Doyama, M. (1986). Computer simulations of the structures of the metallic superlattices Au/Ni and Cu/Ni and their elastic moduli. Journal of Physics F: Metal Physics, 16(7), 823. [37] 余東杰.(2016).“多尺度模擬金屬薄膜奈米轉印之機械特性”, 國立高雄科技 大學碩士論文 [38] Tadmor, E. B., Ortiz, M., & Phillips, R. (1996). Quasicontinuum analysis of defects in solids. Philosophical Magazine A, 73(6), 1529-1563. [39] Foiles, S. M., Baskes, M. I., & Daw, M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33(12), 7983. [40] Parr, R. G., & Bartolotti, L. J. (1983). Some remarks on the density functional theory of few-electron systems. The Journal of Physical Chemistry, 87(15), 2810-2815 [41] Johnson, R. A. (1989). Alloy models with the embedded-atom method. Physical Review B, 39(17), 12554. [42] Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., & Ortiz, M. (1999). An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 47(3), 611-642. [43] Tadmor, E. B., & Miller, R. E. (2005). The theory and implementation of the quasicontinuum method. In Handbook of Materials Modeling (pp. 663-682). Springer, Dordrecht. [44] 林英志.(2017).“多尺度法模擬金屬奈米線接合與機械效應”, 國立高雄科 技大學碩士論文 [45] 蘇玟承.(2019).“準連續法研究異質界面之機械與變形特性”, 國立高雄科 技大學碩士論文 [46] 林尚叡.(2021).“多尺度法研究金屬奈米沖切特性與界面力學”, 國立高雄 科技大學碩士論文 [47] 陳重熺.(2018).“準連續法分析鋁之研磨與壓印特性”, 國立高雄科技大學 碩士論文 [48] Zienkiewicz, O. C., Kelly, D. W., & Bettess, P. (1977). The coupling of the finite element method and boundary solution procedures. International Journal for Numerical Methods in Engineering, 11(2), 355-375. [49] Ming, P. (2007). Cauchy–Born rule and the stability of crystalline solids: static problems. Archive for rational mechanics and analysis, 183(2), 241-297. [50] Miller, R. E., & Tadmor, E. B. (2002). The quasicontinuum method: Overview, applications and current directions. Journal of Computer-Aided Materials Design, 9(3), 203-239. [51] Miller, R. E. (1998). On the generalization of continuum models to include atomistic features. Brown University. [52] Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive 109 procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. [53] 陸裕昇.(2021).“分子動力學模擬鎳鈷鉻中熵合金之機械與加工特性”, 國立 高雄科技大學碩士論文 [54] Kirkwood, J. G. (1949). The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco‐elastic behavior. Recueil des Travaux Chimiques des Pays‐Bas, 68(7), 649-660. [55] Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics, 18(6), 817-829. [56] 郭謦鋐.(2013).“分子動力學分析銅薄膜之奈米鑽孔及銑削製程研究”, 國立 高雄科技大學碩士論文 [57] Frenkel, D., & Smit, B. (2001). Understanding molecular simulation: from algorithms to applications (Vol. 1). Elsevier,176-177. [58] Gibbs, J. W. (1879). On the equilibrium of heterogeneous substances. [59] Mie, G. (1903). Zur kinetischen Theorie der einatomigen Körper. Annalen der Physik, 316(8), 657-697. [60] 李傳昇,(2002).以量子分子動力學方法研究單層奈米碳管之成長,國立成功 大學機械工程研究所碩士論文. [61] Haile, J. M. (1992). Molecular dynamics simulation: elementary methods. John Wiley & Sons, Inc,USA. [62] Bishop, D. M., & Pipin, J. (1993). Dipole, quadrupole, octupole, and dipole– octupole polarizabilities at real and imaginary frequencies for H, HE, and H2 and 110 the dispersion ‐ energy coefficients for interactions between them.International Journal of Quantum Chemistry,45(4), 349-361 [63] Cotterill, R. M., & Doyama, M. (1968). Energies and atomic configurations of line defects and plane defects in FCC metals. Argonne National Lab., Ill. N33140* -Physics (Solid State) [64] Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals.Physical Review B, 29(12), 6443. [65] Haile, J. M. (1992).Molecular dynamics simulation: elementary methods. John Wiley & Sons, Inc,USA. [66] Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625-625. [67] 洪重瑋.(2019).“二維石墨炔機械與熱傳導特性研究”, 國立高雄科技大學碩 士論文 [68] W. Sha, X. Wu, and K. G. Keong. (2011).Molecular dynamics (MD) simulation of the diamond pyramid structure in electroless copper deposits. Electroless Copper and Nickel-Phosphorus Plating: Processing, Characterisation and Modelling. Cambridge, United Kingdom. [69] 黃家煒.(2020).“奈米層狀石墨烯/銅複合材料之機械特性研究”, 國立高雄 科技大學碩士論文 [70] Yuan, Z., Zhao, J., & Huang, S. (2021). Molecular Dynamics Simulations on the Thermal Effect of Interfacial Friction During Asperity Shearing, 24 September 2021, PREPRINT (Version 1) available at Research Square [71] Doan, D. Q., Fang, T. H., & Chen, T. H. (2022). Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes, 74, 423-440. [72] Guo, X., Li, Q., Liu, T., Zhai, C., Kang, R., & Jin, Z. (2016). Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Materials Science in Semiconductor Processing, 51, 15-19. [73] Hu, C., Bai, M., Lv, J., Liu, H., & Li, X. (2014). Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces. Applied Surface Science, 321, 302-309.
|