|
[1] R. Kanwar, J. Rathee, D. B. Salunke, and S. K. Mehta, “Green Nanotechnology-Driven Drug Delivery Assemblies,” ACS omega, vol. 4, pp. 8804–8815, (2019). [2] R. Liu, J. Duaya, and S. B. Lee, “Heterogeneous nanostructured electrode materials for electrochemical energy storage,” Chem. Comm., vol. 47, pp. 1384–1404, (2011). [3] A. Noy, “Bionanoelectronics,” Adv. Mater., vol. 23, pp. 807–820, (2011). [4] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys., vol. 84, pp. 3912–3918, (1998). [5] M. Zhu, W. Meng, Y. Huang, Y. Huang, and C. Zhi, “Proton-Insertion-Enhanced Pseudocapacitance Based on the Assembly Structure of Tungsten Oxide,” ACS Appl. Mater. Interfaces, vol. 6, pp. 18901–18910, (2014). [6] Z. W. Zhou, Y. T. Liu, X. M. Xie, and X. Y. Ye, “Constructing Novel Si@SnO2 Core–Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage,” ACS Appl. Mater. Interfaces, vol. 8, pp. 7092–7100, (2016). [7] W. S. Tung, and W. A. Daoud, “New Approach Toward Nanosized Ferrous Ferric Oxide and Fe3O4-doped Titanium Dioxide Photocatalysts,” ACS Appl. Mater. Interfaces, vol. 1, pp. 2453–2461, (2009). [8] D. P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, and A. K. Tyagi, “Indium Oxide and Europium/Dysprosium Doped Indium Oxide Nanoparticles: Sonochemical Synthesis, Characterization, and Photoluminescence Studies,” J. Phys. Chem. C, vol. 112, pp. 6781–6785, (2008). [9] N. Verma, and N. Kumar, “Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon,” ACS Biomater. Sci. Eng., vol. 5, pp. 1170–1188, (2019). [10] S. W. Choi, W. J. Choi, E. H. Kim, S. H. Moon, S. J. Park, J. O Lee, and S. H. Kim, “Inflammatory Bone Resorption and Antiosteosarcoma Potentials of Zinc Ion Sustained Release ZnO Chips: Friend or Foe,” ACS Biomater. Sci. Eng., vol. 2, pp. 494–500, (2016). [11] G. P. Qu, G. J. Fan, M. Y. Zhou, X. R. Rong, T. Li, R. Zhang, J. Sun, and D. L. Chen, “Graphene-Modified ZnO Nanostructures for Low-Temperature NO2 Sensing,” ACS omega, vol. 4, pp. 4421–4232, (2019). [12] Y. Li, R. Wang, W. Zheng, and Y. Li, “High Conductivity and Excitation-Power Sensitivity of Upconversion Emission in Silica Decoration of Regular Hexagonal Yb and Er Codoped ZnO Core−Shell Particles,” ACS Sustainable Chem. Eng., vol. 7, pp. 13543–13550, (2019). [13] Y. Y. Bu, and Z. Y. Chen, “Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array,” J. Power. Sources., vol. 272, pp. 647–653, (2014). [14] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301, (2005). [15] J. Y. Lee, and H. K. Lee, “Preparation and characterization of ZnO nanorods grown on Pd-activated polyacrylonitrile (PAN) fiber,” Mater. Sci. Eng. C, vol. 263, pp. 114821, (2021). [16] X. H. Xu, S. Y. Ma, X. L. Xu, T. Han, S. T. Pei, Y. Tie, P. F. Cao, W. W. Liu, B. J. Wang, R. Zhang, and J. L. Zhang, “Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube,” Mater. Lett, vol. 273, pp. 167967, (2020). [17] M. A. Pietrzyka, A. Wierzbickaa, E. Zielonyb, A. Pieniazeka, R. Szymonb, and E. Placzek-Popko, “Fundamental studies of ZnO nanowires with ZnCdO/ZnO multiplequantum wells grown for tunable light emitters,” Sens. Actuator A Phys., vol. 315, pp. 112305, (2020). [18] Y. X. Chen, X. Q. Zhao, B. Sha, and J. H. Chen, “Stacking fault directed growth of thin ZnO nanobelt,” Mater. Lett, vol. 62, pp. 2369–2371, (2008). [19] Y. C. Chang, “Low temperature and large-scale growth of ZnO nanoneedle arrays with enhanced optical and surface-enhanced Raman scattering properties,” Sens. Actuators B Chem., vol. 225, pp. 498–503, (2016). [20] K. C. Hsu, T. H. Fang, Y. J. Hsiao, and Z. J. Li, “Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers,” J. Alloys Compd., vol. 852, pp. 157014, (2021). [21] W. C. Liu, and W. Cai, “Synthesis and characterization of ZnO nanorings with ZnO nanowires array aligned at the inner surface without catalyst,” J. Cryst. Growth, vol. 310, pp. 843–846, (2008). [22] N. G. Shimpia, S. Jaina, N. Karmakar, A. Shaha, D. C. Kotharib, and S. Mishra, “Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor,” Appl. Surf. Sci, vol. 390, pp. 17–24, (2016). [23] L. X. Zhang, G. N. Li, Y. Y. Yin, Y. Xing, H. Xu, J. J. Chen, and L. J. Bie, “Zn3(VO4)2-decoration induced acetone sensing improvement of defective ZnO nanosheet spheres,” Sens. Actuators B Chem., vol. 325, pp. 128805, (2020). [24] F. I. Lai, J. F. Yang, Y. C. Hsu, and S. Y. Kuo, “Enhanced omnidirectional light harvesting in dye-sensitized solar cells with periodic ZnO nanoflower photoelectrodes,” J. Colloid Interface Sci., vol. 562, pp. 63–70, (2020). [25] W. L. Hughes, and Z. L. Wang, “Formation of Piezoelectric Single-Crystal Nanorings and Nanobows,” J. Am. Chem. Soc., vol. 126, pp. 6703–6709, (2004). [26] P. K. Samanta, and S. Mishra, “Wet chemical growth and optical property of ZnO nanodiscs,” Optik, vol. 124, pp. 2871–2873, (2013). [27] R. Ahmad, N. Tripathy, M. Y. Khan, K. S. Bhat, M. S. Ahn, and Y. B. Hahn, “Ammonium ion detection in solution using vertically grown ZnO nanorod based field-effect transistor,” Rsc. Adv., vol. 60, pp. 54836–54840, (2016). [28] K. Benyahia, F. Djeffal, H. Ferhati, A. Bendjerad, A. Benhaya, and A. Saidi, “Self-powered photodetector with improved and broadband multispectral photoresponsivity based on ZnO-ZnS composite,” J. Alloys Compd., vol. 859, pp. 158242, (2020). [29] Z. F. Shi, Y. T. Zhang, X. J. Cui, S. W. Zhuang, B. Wu, J. Y. Jiang, X. W. Chu, X. Dong, B. L. Zhang, and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes applications,” CrystEngComm., vol. 17, pp. 40–49, (2015). [30] B. Fang, C. H. Zhang, G. F. Wang, M. F. Wang, and Y. L. Ji, “A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres,” Sens. Actuators B Chem., vol. 155, pp. 304–310, (2011). [31] T. H. Jeoung, Y. S. Kim, Y. S. Nam, S. H. Lee, J. W. Kang, J. C. Kim, and S. G. Lee, “Development of Thermal Runaway Preventing ZnO Varistor for Surge Protective Device,” J. Nanosci. Nanotechno., vol. 14, pp. 8957–8960, (2014). [32] Z. S. Hosseini, A. I. Zad, and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sens. Actuators B Chem., vol. 207, pp. 865–871, (2015). [33] C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express., vol. 22, pp. 16731–16737, (2014). [34] W. B. Wang, H. Gu, X. L. He, W. P. Xuan, J. K. Chan, X. Z. Wang, and J. K. Luo, “Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates,” Appl. Phys. Lett., vol. 104, pp. 212107, (2014). [35] L. Bahadur, and S. Kushwaha, “Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells,” Appl. Phys. A, vol. 109, pp. 655–663, (2012). [36] F. M. Simanjuntak, O. K. Prasad, D. Panda, C. A. Lin, T. L. Tsai, K. H. Wei, and T. Y. Tseng, “Impacts of Co doping on ZnO transparent switching memory device characteristics,” Appl. Phys. Lett., vol. 108, pp. 183506, (2016). [37] M. Advand, M. Kolahdouz, A. Rostami, M. Masnadi-Shirazi, M. Norouzi, A. H. Karami, and N. Hajiabdolrahim, “Array of vertically aligned Al-doped ZnO nanorods: Fabrication process and field emission performance,” Thin Solid Films, vol. 656, pp. 6–13, (2018). [38] S. A. Adi, A. Kadri, and K. Zitouni, “Combined ab-initio and Schrodinger-Poisson simulation study of spontaneous and piezoelectric polarizations effects on I-V characteristics of ZnO/MgxZn1-xO heterostructures,” Comput. Condens. Matter, vol. 21, pp. e00430, (2019). [39] H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, J. K. Tseng, P. Y. Yang, J. C. Chou, and H. C. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gatefield-effect transistoras pH sensor,” Thin Solid Films, vol. 529, pp. 173–176, (2013). [40] S. Azada, E. Sadeghia, R. Parvizia, and A. Mazaherib, “Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods,” Mater Sci. Semicond Process, vol. 66, pp. 200–206, (2017). [41] H. Y. Lee, C. Y. Cheng, and C. T. Lee, “Bottom gate thin-film transistors using parallelly lateral ZnO nanorods grown by hydrothermal method,” Mater Sci. Semicond Process, vol. 119, pp. 105223, (2020). [42] A. N. U. Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, and I. Khan, “Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity,” J. Nanomater, vol. 2017, pp. 1–14, (2017). [43] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter, vol. 16, pp. R829–R858, (2004). [44] A. Kolodziejczak-Radzimska, and T. Jesionowski, “Zinc Oxide-From Synthesis to Application: A Review,” Materials, vol. 7, pp. 2833–2881, (2014). [45] S. R. Hejazi, H. R. M. Hosseini, and M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism,” J. Alloys Compd., vol. 455, pp. 353–357, (2008). [46] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, “Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties,” J. Cryst. Growth, vol. 282, pp. 131–136, (2005). [47] K. Flomin, M. Diab, and T. Mokari, “Ternary hybrid nanostructures of Au–CdS–ZnO grown via a solution–liquid–solid route using Au–ZnO catalysts.” Nanoscale, vol. 9, pp. 16138–16142, (2017). [48] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, and Y. Lu, “Selective MOCVD Growth of ZnO Nanotips,” IEEE T. Nanotechnol., vol. 2, pp. 50–54, (2003). [49] M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods,” J. Appl. Phys., vol. 94, pp. 5240–5246, (2003). [50] S. S. Brenner, and G. W. Sears, “Mechanism of whisker growth—III nature of growth sitesMécanisme de croissance des barbes—III nature des sites de croissanceMechanismus des whisker-wachstums—III natur der wachstumsstellen,” Acta Metallurgica, vol. 4, pp. 268–270, (1956). [51] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, pp. 6023, (1998). [52] M. Guo, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Ma, X. D. Wang, and X. D. Wang, “Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays,” Electrochimica Acta, vol. 53 , pp. 4633–4641, (2008). [53] S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, “A Sonochemical Method for Fabricating Aligned ZnO Nanorods,” Adv. Mater, vol. 19, pp. 749–753, (2007). [54] K. N. Lee, S. Bang, N. T. Duong, S. J. Yun, D. Y. Park, J. Lee, Y. C. Choi, and M. S. Jeong, “Encapsulation of a Monolayer WSe2 Phototransistor with Hydrothermally Grown ZnO Nanorods,” ACS Appl. Mater. Interfaces, vol. 11, pp. 20257–20264, (2019). [55] M. Y. Chuang, Y. C. Chen, Y. K. Su, C. H. Hsiao, C. S. Huang, J. J. Tsai, and H. C. Yu, “Negative Differential Resistance Behavior and Memory Effect in Laterally Bridged ZnO Nanorods Grown by Hydrothermal Method,” ACS Appl. Mater. Interfaces, vol. 6, pp. 5432–5438, (2014). [56] D. K. Schroder, and L. G. Rubin, “Semiconductor Material and Device Characterization,” Phys. Today, vol. 44, pp. 107, (1991). [57] S. M. Sze, “Physics of Semiconductor Devices,” New York, John Wiley & Sons, (1981). [58] E. H. Phoderick, and R. H. Williams, “Metal-Semiconductor Contacts, 2nd ed,” New York, Oxford University press, (1988). [59] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433–7473, (1996). [60] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Appl. Phys. Lett., vol. 96, pp. 053102, (2010). [61] F. Sun, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L Yang, and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Mater. Chem. Phys, vol. 129, pp. 27–29, (2011). [62] J. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J. H. Lee, J. Yi, and C. S. Han, “ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect,” Nanotechnology, vol. 21, pp. 115205, (2010). [63] L. Qin, C. Shing, and S. Sawyer, “Metal-semiconductor-metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles,” IEEE Electron Device Lett., vol. 32, pp. 51–53, (2011). [64] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos, and H. Luth, “Electrical behaviour of the InPInGaAs based MSM-2DEG diode,” Solid State Electron, vol. 41, pp. 25–31, (1997). [65] S. Bhatia, N. Verma, and R. K. Bedi, “Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques,” Results Phys, vol. 7, pp. 801–806, (2017). [66] A. L. Zou, Y. Qiu, J. J. Yu, B. Yina, G. Y. Cao, H. Q. Zhanga, and L. Z. Hu, “Ethanol sensing with Au-modified ZnO microwires,” Sens. Actuators B Chem., vol. 227, pp. 65–72, (2016). [67] D. Acharyya, and P. Bhattacharyya, “Alcohol sensing performance of ZnO hexagonal nanotubes at lowtemperatures: A qualitative understanding,” Sens. Actuators B Chem., vol. 228, pp. 373–386, (2016). [68] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. A, vol. 119, pp. 173–181, (1928). [69] E. L. Murphy, and R. H. Good, Jr. “Thermionic Emission, Field Emission, and the Transition Region,” Phys. Rev., vol. 102, pp. 1464–1473, (1956). [70] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display,” IEEE Trans. Electron Devices, vol. 36, pp. 225–228, (1989). [71] Y. Saito, and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon, vol. 38, pp. 169–182, (2000). [72] Z. L. Wang, “Self-Powered Nanotech,” Sci. Am., vol. 298, pp. 82–87, (2008). [73] Z. L. Wang, “Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics,” Adv. Funct. Mater., vol. 18, pp. 3553–3567, (2008). [74] Z. L. Wang, “Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators,” MRS Bull., vol. 32, pp.109–116, (2007). [75] Y. Gao, and Z. L. Wang, “Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics,” Nano. Lett., vol. 7, pp. 2499–2505, (2007). [76] S. J. Young, L. W. Ji, S. J. Chang, and X. L. Du, “ZnO Metal-Semiconductor-Metal Ultraviolet Photodiodes with Au Contacts,” J. Electrochem. Soc., vol. 154, pp. H26–H29, (2007). [77] X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, “Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector,” Appl. Phys. A: Mater. Sci. Process., vol. 107, pp. 255–260, (2012). [78] L. W. Ji, S. M. Peng, J. S. Wu, W. S. Shih, C. Z. Wu, and I. T. Tang, “Effect of seed layer on the growth of well-aligned ZnO nanowires,” J. Phys. Chem. Solids, vol. 70, pp. 1359–1362, (2009). [79] X. S. Fang, T. Y. Zhai, U. K. Gautam, L. Li, L. M. Wu, Y. S. Bando, and D. Golberg, “ZnS nanostructures: From synthesis to applications,” Prog. Mater Sci., vol. 56, pp. 175–287, (2011). [80] J. W. Orton, “Acceptor binding energy in GaN and related alloys,” Semicond. Sci. Technol., vol. 10, pp. 101–104, (1995). [81] T. H. Chang, Y. C. Chang, and S. H. Wu, “Ag nanoparticles decorated ZnO: Al nanoneedles as a high performance surface-enhanced Raman scattering substrate,” J. Alloys Compd., vol. 843, pp. 156044, (2016). [82] T. K. Hong, N. Tripathy, H. J. Son, K. T. Ha, H. S. Jeong, and Y. B. Hahn, “A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity,” J. Mater. Chem. B, vol. 1, pp. 2985–2992, (2013). [83] L. W. Ji, C. M. Lin, T. H. Fang, T. T. Chu, H. L. Jiang, W. S. Shi, C. Z. Wu, T. L. Chang, T. H. Meen, and J. C. Zhong, “Structural and optical properties of ZnO nanorods grown on MgxZn1−xO buffer layers,” Appl. Surf. Sci., vol. 256, pp. 2138–2142, (2010). [84] Y. F. Hsu, Y. Y. Xi, A. B. Djurisic, and W. K. Chan, “ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition,” Appl. Phys. Lett., vol. 92, pp. 133507, (2008). [85] H. Jeong, S. M. Rafael, and M. S. Jeong, “Optimal length of ZnO nanorods for improving the light-extraction efficiency of blue InGaN light-emitting diodes,” Opt. Express, vol. 23, pp. 23195–23207, (2015). [86] C. Z. Wu, L. W. Ji, S. M. Peng, Y. L. Chen, and S. J. Young, “MgZnO Nanorod Homojunction Photodetectors for Solar-Blind Detection,” Electrochem. Solid-State Lett., vol. 14, pp. J55–J57, (2011). [87] C. T. Lee, and Y. S. Chiu, “Piezoelectric ZnO-nanorod-structured pressure sensors using GaN-based fieldeffect-transistor,” Appl. Phys. Lett., vol. 106, pp. 073502, (2015). [88] T. Wang, Z. Jiao, T. Chen, Y. Li, W. Ren, S. Lin, G. Lu, J. Ye, and Y. Bi, “Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications,” Nanoscale., vol. 5, pp. 7552–7557, (2013). [89] L. Hu, L. Zhu, H. He, Y. Guo, G. Pan, J. Jiang, Y. Jin, L. Sun, and Z. Ye, “Colloidal chemically fabricated ZnO:Cu-based photodetector with extended UV-visible detection waveband,” Nanoscale., vol. 5, pp. 9577–9581, (2013). [90] R. Dingle, “Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide,” Phys. Rev. Lett., vol. 23, pp. 579–581, (1969). [91] J. J. Ding, H. X. Chen, X. G. Zhao, and S. Y. Ma, “Effect of substrate and annealing on the structural and optical properties of ZnO:Al films,” J. Phys. Chem. Solids, vol. 71, pp. 346–350, (2010). [92] S. Muthukumaran, and R. Gopalakrishnan, “Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method,” Opt. Mater., vol. 34, pp. 1946–1953, (2012). [93] T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, and T. Yamamoto, “Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge,” Surf. Coat. Technol., vol. 202, pp. 973–976, (2007). [94] S. H. Mousavi, H. Haratizadeh, and H. Minaee, “The effect of morphology and doping on photoluminescence of ZnO nanostructures,” Opt. Commun., vol. 284, pp. 3558–3561, (2011). [95] D. B. Buchholz, R. P. H. Chang, J. Y. Song, and J. B. Ketterson, “Room-temperature ferromagnetism in Cu-doped ZnO thin films,” Appl. Phys. Lett., vol. 87, pp. 082504, (2005). [96] G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T. C. Sum, C. H. A. Huan, and T. Wu, “Comparative Study of Room-Temperature Ferromagnetism in Cu-Doped ZnO Nanowires Enhanced by Structural Inhomogeneity,” Adv. Mater., 20, pp. 3521–3527, (2008). [97] J. B. Kim, D. Byun, S. Y. Ie, D. H. Park, W. K. Choi, C. Ji-Won, and A. Basavaraj, “Cu-doped ZnO-based p–n hetero-junction light emitting diode,” Semicond. Sci. Technol., vol. 23, pp. 095004, (2008). [98] R. Shabannia, “Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate,” J. Mol. Struct., vol. 1118, pp. 157–160, (2016). [99] M. Babikier, D. B. Wang, J. Z. Wang, Q. Li, J. M. Sun, Y. Yan, Q. J. Yu, and S. J. Jiao, “Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration,” Nanoscale Res. Lett., vol. 9, pp. 199, (2014). [100] P. Chand, A. Gaur, A. Kumar, and U. K. Gaur, “Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition,” Ceram. Int., vol. 40, pp. 11915–11923, (2014). [101] S. Kumar, B. Koo, C. Lee, S. Gautam, K. Chae, S. Sharma, and M. Knobel, “Room Temperature Ferromagnetism in Pure and Cu Doped ZnO Nanorods: Role of Copper or Defects,” Func. Mater. Lett., vol. 4, pp. 17–20, (2011). [102] D. C. Reynolds, D. C. Look, B. Jobai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151, (1998). [103] T. Imyen, W. Limphirat, G. Rupprechter, and P. Kongkachuichay, “Roles of ZnO in Cu/Core−Shell Al−MCM-41 for NO Reduction by Selective Catalytic Reduction with NH3: The Effects of Metal Loading and Cu/ZnO Ratio,” ACS Omega, vol. 4, pp. 1077–1085, (2019). [104] X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci., vol. 253, pp. 6905–6909, (2007). [105] K. Noipa, S. Rujirawat, R. Yimnirun, V. Promarak, and S. Maensiri, “Synthesis, structural, optical and magnetic properties of Cu-doped ZnO nanorods prepared by a simple direct thermal decomposition route,” Appl. Phys. A, vol. 117, pp. 927–935, (2014). [106] Y. T. Tsai, S. J. Chang, L. W. Ji, Y. J. Hsiao, I. T. Tang, H. Y. Lu, and Y. L. Chu, “High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode,” ACS Omega, vol. 3, pp. 13798–13807, (2018). [107] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Noise Properties of Mg-Doped ZnO Nanorods Visible-Blind Photosensors,” IEEE J. Sel. Topics Quantum Electron., vol. 21, pp. 3800405, (2015). [108] A. Bera, and D. Basak, “Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires,” Appl. Phys. Lett., vol. 93, pp. 053102, (2008). [109] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano. Lett., vol. 7, pp. 1003–1009, (2007). [110] C. West, D. J. Robbins, P. J. Dean, and W. Hayes, “The luminescence of copper in zinc oxide,” Physica B+C., vol. 116, pp. 492–499, (1983). [111] J. V. Bellini, M. R. Morelli, and R. H. G. A. Kiminami, “Electrical properties of polycrystalline ZnO:Cu obtained from freeze-dried ZnO+copper(II) acetate powders,” J. Mater. Sci.: Mater. Electron., vol. 13, pp. 485–489, (2002). [112] S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. R. Lin, I. C. Chen, and B. R. Huang, “A ZnO nanowire vacuum pressure sensor,” Nanotechnology, vol. 19, pp. 095505, (2008). [113] J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, C. L. Yang, D. Z. Shen, and X. W. Fan, “High responsivity ultraviolet photodetector realized via a carrier-trapping process,” Appl. Phys. Lett., vol. 97, pp. 251102, (2010). [114] W. Dai, X. H. Pan, C. Chen, S. S. Chen, W. Chen, H. H. Zhang, and Z. Z. Ye, “Enhanced UV detection performance using a Cu-doped ZnO nanorod array film,” RSC Adv., vol. 4, pp. 31969–31972, (2014). [115] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett., vol. 94, pp. 203106, (2009). [116] S. J. Young, and Y. H. Liu, “Ultraviolet Photodetectors With 2-D Indium-Doped ZnO Nanostructures,” IEEE Trans. Electron Devices, vol. 63, pp. 3160–3164, (2016). [117] X. X. Gong, G. T. Fei, W. B. Fu, B. N. Zhong, X. D. Gao, and L. D. Zhang, “Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time,” Appl. Surf. Sci., vol. 404, pp. 7–11, (2017). [118] S. J. Young, and K. W. Yuan, “Self-Powered ZnO Nanorod Ultraviolet Photodetector Integrated with Dye-Sensitised Solar Cell,” J. Electrochem. Soc., vol. 166, pp. B1034–B1037, (2019). [119] A. Sciuto, A. Meli, L. Calcagno, S. D. Franco, M. Mazzillo, G. Franzo, S. Albergo, A. Tricomi, D. Longo, G. Giudice, and G. D. Arrigo, “Large-Area SiC-UV Photodiode for Spectroscopy Portable System,” IEEE Sensors J., vol. 19, pp. 2931–2936, (2019). [120] M. L. Tu, Y. K. Su, S. J. Chang, and R. W. Chuang, “GaN UV photodetector by using transparency antimony-doped tin oxide electrode,” J. Cryst. Growth, vol. 298, pp. 744–747, (2007). [121] T. J. Chang, and T. J. Hsueh, “A NO2 Gas Sensor with a TiO2 Nanoparticles/ZnO/MEMS-Structure that is Produced Using Ultrasonic Wave Grinding Technology,” J. Electrochem. Soc., vol. 167, pp. 027521, (2020). [122] X. Liang, J. Zhang, L. Y. Du, and M. Z. Zhang, “Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature,” Sens. Actuators B Chem., vol. 329, pp. 129230, (2021). [123] M. H. Liu, Y. W. Chen, T. S. Lin, and C. Y. Mou, “Defective Mesocrystal ZnO-Supported Gold Catalysts: Facilitating CO Oxidation via Vacancy Defects in ZnO,” ACS Catal., vol. 8, pp. 6862–6869, (2018). [124] Y. L. Chu, L. W. Ji, H. Y. Lu, S. J. Young, I. T. Tang, T. T. Chu, J. S. Guo, and Y. T. Tsai, “Fabrication and Characterization of UV Photodetectors with Cu-Doped ZnO Nanorod Arrays,” J. Electrochem. Soc., vol. 167, pp. 027522, (2020). [125] S. J. Young, and W. L. Tang, “Wireless Zinc Oxide Based pH Sensor System,” J. Electrochem. Soc., vol. 166, pp. B3047–B3050, (2019). [126] E. Espid, B. Adeli, and F. Taghipour, “Enhanced Gas Sensing Performance of Photo-Activated, Pt-Decorated, Single-Crystal ZnO Nanowires,” J. Electrochem. Soc., vol. 166, pp. H3223–H3230, (2019). [127] W. H. Zhou, H. H. Wang, W. T. Li, X. C. Guo, D. X. Kou, Z. J. Zhou, Y. N. Meng, Q. W. Tian, and S. X. Wu, “Gold Nanoparticles Sensitized ZnO Nanorods Arrays for Dopamine Electrochemical Sensing,” J. Electrochem. Soc., vol. 165, pp. G3001–G3007, (2018). [128] D. W. Wu, M. Yang, Z. B. Huang, G. F. Yin, X. M. Liao, Y. Q. Kang, X. F. Chen, and H. Wang, “Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution,” J. Colloid Interface Sci., vol. 330, pp. 380–385, (2009). [129] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation,” J. Phys. Chem. B, vol. 109, pp. 2526–2531, (2005). [130] E. Chikoidze, M. Modreanu, V. Sallet, O. Gorochov, and P. Galtier, “Electrical properties of chlorine-doped ZnO thin films grown by MOCVD,” Phys. Status Solidi A, vol. 205, pp. 1575–1579, (2008). [131] J. K. Zhao, S. S. Ge, D. Pan, Y. L. Pan, V. Murugadoss, R. J. Li, W. Xie, Y. Lu, T. T. Wu, E. K. Wujcik, Q. Shao, X. M. Mai, and Z. H. Guo, “Microwave Hydrothermal Synthesis of In2O3-ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties,” J. Electrochem. Soc., vol. 166, pp. H3074–H3083, (2019). [132] Z. Ke, Z. Yang, M. Q. Wang, M. H. Cao, Z. W. Sun, and J. Y. Shao, “Low temperature annealed ZnO film UV photodetector with fast photoresponse,” Sens. Actuators A Phys., vol. 253, pp. 173–180, (2017). [133] R. Anitha, R. Ramesh, R. Loganathan, D. S. Vavilapalli, K. Baskar, and S. Singh, “Large area ultraviolet photodetector on surface modified Si:GaN layers,” Appl. Surf. Sci., vol. 435, pp. 1057–1064, (2018). [134] S. I. Inamdar, V. V. Ganbavle, and K. Y. Rajpure, “ZnO based visible–blind UV photodetector by spray pyrolysis,” Superlattices Microstruct., vol. 76, pp. 253–263, (2014). [135] R. Bahramian, H. Eshghi, and A. Moshaii, “Influence of annealing temperature on morphological, optical and UV detection properties of ZnO nanowires grown by chemical bath deposition,” Mater. Des., vol. 107, pp. 269–276, (2016). [136] S. B. Jagadale, V. L. Patil, S. S. Mali, S. A. Vanalakar, C. K. Hong, P. S. Patil, and H. P. Deshmukh, “Nanorods to nanosheets structural evolution of NixZn1-xO for NO2 gas sensing application,” J. Alloys Compd., vol. 766, pp. 941–951, (2018). [137] I. B. Elkamel, N. Hamdaoui, A. Mezni, R. Ajjel, and L. Beji, “High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles,” RSC Adv., vol. 8, pp. 32333–32343, (2018). [138] S. H. Chiu, and J. C. A. Huang, “Chemical bath deposition of ZnO and Ni doped ZnO nanorod,” J. Non-Cryst. Solids, vol. 358, pp. 2453–2457, (2012). [139] K. H. Kim, Z. Jin, Y. Abe, and M. Kawamura, “A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures,” Mater. Lett., vol. 149, pp. 8–11, (2015). [140] X. Dong, J. Wang, H. Wang, Z. Shi, and B. Zhang, “Adjust the Content of nickel in NiZnO Films by Vacuum Anneal,” Adv. Mater. Res., vol. 562, pp. 11–14, (2012). [141] P. R. Chithira, and T. T. John, “Defect and dopant induced room temperature ferromagnetism in Ni doped ZnO nanoparticles,” J. Alloys Compd., vol. 766, pp. 572–583, (2018). [142] L. M. Trinca, A. C. Galca, V. Stancu, C. Chirila, and L. Pintilie, “Structural Characterization of Impurified Zinc Oxide Thin Films,” AIP Conf. Proc., vol. 1627, pp. 123–128, (2014). [143] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta. Cryst., vol. A32, pp. 751–767, (1976). [144] M. L. Dinesha, H. S. Jayanna, S. Mohanty, and S. Ravi, “Structural, electrical and magnetic properties of Co and Fe co-doped ZnO nanoparticles prepared by solution combustion method,” J. Alloys Compd., vol. 490, pp. 618–623, (2010). [145] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Phan, R. He, and H. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Funct. Mater., vol. 12, pp. 323–331, (2002). [146] M. R. Modaberi, R. Rooydell, S. Brahma, A. A. Akande, B. W. Mwakikunga, and C. P. Liu, “Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors,” Sens. Actuators B Chem., vol. 273, pp. 1278–1290, (2018). [147] J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties,” J. Am. Chem. Soc, vol. 127, pp. 16376–16377, (2005). [148] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method,” IEEE Trans. Electron Devices, vol. 26, pp. 2924–2927, (2015). [149] S. J. Young, Y. H. Liu, C. H. Hsiao, S. J. Chang, B. C. Wang, T. H. Kao, K. S. Tsai, and S. L. Wu, “ZnO-Based Ultraviolet Photodetectors With Novel Nanosheet Structures,” IEEE Trans. Nanotechnol., vol. 13, pp. 238–244, (2014). [150] S. J. Young, C. L. Chiou, Y. H. Liu, and L. W. Ji, “Synthesis of Ga-Doped ZnO Nanorods by Hydrothermal Method and Their Application to Ultraviolet Photodetector,” Inventions, vol. 1, pp. 3, (2016). [151] S. J. Young, and Y. H. Liu, “High Response of Ultraviolet Photodetector Based on Al-Doped ZnO Nanosheet Structures,” IEEE J. Sel. Topics Quantum Electron., vol. 23, pp. 3800905, (2017). [152] S. Safa, “Enhanced UV-detection properties of carbon nanotube impregnated ZnO nanourchins,” Optik., vol. 126, pp. 2194–2198, (2015). [153] N. K. Hassan, and M. R. Hashim, “Flake-like ZnO nanostructures density for improved absorption using electrochemical deposition in UV detection,” J. Alloys Compd., vol. 577, pp. 491–497, (2013). [154] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S. J. Young, and B. R. Huang, “A CuO nanowire infrared photodetector,” Sens. Actuators A Phys., vol. 171, pp. 207–211, (2011). [155] A. B. Djurisic, and Y. H. Leung, “Optical Properties of ZnO Nanostructures,” Small, vol. 2, pp. 944–961, (2006). [156] S. J. Chang, C. W. Liu, C. H. Hsiao, K. Y. Lo, S. J. Young, T. H. Kao, K. S. Tsai, and S. L. Wu, “Noise Properties of Fe-ZnO Nanorod Ultraviolet Photodetectors,” IEEE Photon. Technol. Lett., vol. 25, pp. 2089–2092, (2013). [157] C. H. Hsiao, C. S. Huang, S. J. Young, S. J. Chang, J. J. Guo, C. W. Liu, and T. Y. Yang, “Field-Emission and Photoelectrical Characteristics of Ga–ZnO Nanorods Photodetector,” IEEE Trans. Electron Devices, vol. 60, pp. 1905–1910, (2013). [158] N. Kumar, and A. Srivastava, “Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by Cd,” J. Alloys Compd., vol. 706, pp. 438–446, (2017). [159] N. Kumar, and A. Srivastava, “Green photoluminescence and photoconductivity from screen-printed Mg doped ZnO films,” J. Alloys Compd., vol. 735, pp. 312–318, (2018). [160] F. Zee, and J. W. Judy, “Micromachined polymer-based chemical gas sensor array,” Sens. Actuators B Chem., vol. 72, pp. 120–128, (2001). [161] T. Tharsika, A. S. M. A. Haseeb, S. A. Akbar, M. F. M. Sabri, and W. Y. Hoong, “Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures,” Sensors., vol. 14, pp. 14586–14600, (2014). [162] J. R. Huang, G. Y. Li, Z. Y. Huang, X. J. Huang, and J. H. Liu, “Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor,” Sens. Actuators B Chem., vol. 114, pp. 1059–1063, (2006). [163] M. M. Alaie, M. Jahangiri, A. M. Rashidi, A. H. Asl, and N. Izadi, “A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide,” J. Ind. Eng. Chem., vol. 29, pp. 97–103, (2015). [164] J. B. K. Law, and J. T. L. Thong, “Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration,” Nanotechnology., vol. 19, pp. 205502 (2008). [165] D. R. Patil, L. A. Patil, and D. P. Amalnerkar, “Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors,” Bull. Mater. Sci., vol. 30, pp. 553–559, (2007). [166] H. A. Hamid, Z. Lockman, and K. A. Razak, “Properties of Zinc Oxide Nanorods as Ethanol Sensor,” J. Phys.: Conf. Ser., vol. 1083, pp. 012039, (2018). [167] C. L. Lu, S. J. Chang, T. C. Weng, and T. J. Hsueh, “A Bifacial SnO2 Thin-Film Ethanol Gas Sensor,” IEEE Electron Device Lett., vol. 39, pp. 1223–1225, (2018). [168] A. Alberti, L. Renna, S. Sanzaro, E. Smecca, G. Mannino, C. Bongiorno, C. Galati, L. Gervasi, A. Santangelo, and A. L. Magna, “Innovative spongy TiO2 layers for gas detection at low working temperature,” Sens. Actuators B Chem., vol. 259, pp. 658–667, (2018). [169] C. H. Lin, S. J. Chang, and T. J. Hsueh, “A WO3 nanoparticles NO gas sensor prepared by hot-wire CVD,” IEEE Electron Device Lett., vol. 38, pp. 266–269, (2017). [170] A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane, and K. Kalantar-Zadeh, “Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications,” J. Mater. Chem. C., vol. 2, pp. 5247–5270, (2014). [171] S. Yi, S. Q. Tian, D. W. Zeng, K. Xu, S. P. Zhang, and C. S. Xie, “An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance,” Sens. Actuators B Chem., vol. 185, pp. 345–353, (2013). [172] C. M. Chang, M. H. Hon, and I. C. Leu, “Preparation of ZnO nanorod arrays with tailored defect-related characteristics and their effect on the ethanol gas sensing performance,” Sens. Actuators B Chem., vol. 151, pp. 15–20, (2010). [173] C. H. Huang, Y. L. Chu, L. W. Ji, I. T. Tang, T. T. Chu, and B. J. Chiou, “Fabrication and characterization of homostructured photodiodes with Li-doped ZnO nanorods,” Microsyst. Technol., vol. 1, pp. 1, (2020). [174] Y. L. Chu, L. W. Ji, Y. J. Hsiao, H. Y. Lu, S. J. Young, I. T. Tang, T. T. Chu, and X. J. Chen, “Fabrication and Characterization of Ni-Doped ZnO Nanorod Arrays for UV Photodetector Application,” J. Electrochem. Soc., vol. 167, pp. 067506, (2020). [175] S. P. Chang, C. W. Li, K. J. Chen, S. J. Chang, C. L. Hsu, T. J. Hsueh, and H. T. Hsueh, “ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate,” Sci. Adv. Mater., vol. 4, pp. 1174–1178, (2012). [176] K. Koike, Y. Mori, S. Sasa, Y. Hirofuji, and M. Yano, “Glucose Sensing by an Enzyme modified ZnO-based FET,” Proc. Eng., vol. 168, pp. 84–88, (2016). [177] A. C. Catto, L. F. da Silva, C. Ribeiro, S. Bernardini, K. Aguir, E. Longo, and V. R. Mastelaro, “An easy method of preparing ozone gas sensors based on ZnO nanorods,” RSC Adv., vol. 5, pp. 19528–19533, (2015). [178] K. T. Lam, Y. L. Chu, L. W. Ji, Y. J. Hsiao, T. T. Chu, and B. W. Huang, “Characterization of nanogenerators based on S-doped zinc oxide nanorod arrays,” Microsyst. Technol., vol. 1, pp. 1, (2020). [179] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, and I. C. Chen, “ZnO nanotube ethanol gas sensors,” J. Electrochem. Soc., vol. 155, pp. K152–K155, (2008). [180] N. M. Sbrockey, and S. Ganesan “ZnO thin films by MOCVD,” III-Vs Review, vol. 17, pp. 23–25, (2008). [181] E. Zielonya, A. Wierzbickab, R. Szymona, M. A. Pietrzykb, and E. Placzek-Popkoa, “Investigation of micro-strain in ZnO/(Cd,Zn)O multiple quantum well nanowires grown on Si by MBE,” Appl. Surf. Sci, vol. 538, pp. 148061, (2008). [182] M. G. Tsoutsouva, C. N. Panagopoulos, D. Papadimitriou, I. Fasaki, and M. Kompitsas, “ZnO thin films prepared by pulsed laser deposition,” Mat Sci Eng B., vol. 176, pp. 480–483, (2011). [183] K. V. Gurav, M. G. Gang, S. W. Shin, U. M. Patil, P. R. Deshmukh, G. L. Agawane, M. P. Suryawanshi, S. M. Pawar, P. S. Patill, C. D. Lokhande, and J. H. Kim, “Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios,” Sens. Actuators B Chem., vol. 190, pp. 439–455, (2014). [184] C. S. Rout, A. Govindaraj, and C. N. R. Rao, “High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires,” J. Mater. Chem., vol. 16, pp. 3936–3941, (2006). [185] S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, and X. Correig, “Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices,” Chem. Commun., vol. 47, pp. 565–567, (2011). [186] S. Barthwal, Y. Kim, J. Ahn, and S. H. Lim, “Fabrication of a superamphiphilic SS-400 oil separator surface using a Ag-doped ZnO nanorod coating,” Sci. Adv. Mater., vol. 8, pp. 1595–1602, (2016). [187] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano. Lett., vol. 5, pp. 667–673, (2005). [188] G. X. Zhu, H. Xu, Y. J. Liu, X. Xu, Z. Y. Ji, X. P. Shen, and Z. Xu., “Enhanced gas sensing performance of Co-doped ZnO hierarchical microspheres to 1,2-dichloroethane,” Sens. Actuators B Chem., vol. 166, pp. 36–43, (2012). [189] T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin, and I. C. Chen, “ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures,” J. Electrochem. Soc., vol. 154, pp. J393–J396, (2007). [190] C. W. Liu, S. J. Chang, C. H. Hsiao, K. Y. Lo, T. H. Kao, B. C. Wang, S. J. Young, K. S. Tsai, and S. L. Wu, “Noise Properties of Low-Temperature-Grown Co-Doped ZnO Nanorods as Ultraviolet Photodetectors,” IEEE J. Sel. Top. Quant. Electron., vol. 20, pp. 3800707, (2014). [191] A. Kaphle, T. Reed, A. Apblett, and P. Hari, “Doping Efficiency in Cobalt-Doped ZnO Nanostructured Materials,” J. Nanomater., vol. 2019, pp. 1, (2019). [192] M. K. Patra, K. Manzoor, M. Manoth, S. R. Vadera, and N. Kumar, “Studies on structural and magnetic properties of Co-doped pyramidal ZnO nanorods synthesized by solution growth technique,” J. Phys. Chem. Solids., vol. 70, pp. 659–664, (2009). [193] E. Nurfani, A. Lailani, W. A. P. Kesuma, M. S. Anrokhi, G. T. M. Kadja, and M. Rozana, “UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis,” Opt. Mater., vol. 112, pp. 110768, (2021). [194] H. Y. Lu, S. Y. Chu, and S. H. Cheng, “The vibration and photoluminescence properties of one-dimensional ZnO nanowires,” J. Cryst. Growth, vol. 274, pp. 506–511, (2005). [195] Z. S. Hua, F. Y. Hung, S. J. Chang, K. J. Chen, and Y. Z. Chen, “Crystallization effect of Al–Ag alloying layer in PL enhancement of ZnO thin film,” Intermetallics, vol. 18, pp. 1428–1431, (2010). [196] B. Q. Wang, X. D. Shan, Q. Fu, J. Iqbal, L. Yan, H. G. Fu, and D. P. Yu, “Photoluminescence properties of Co-doped ZnO nanorods array fabricated by the solution method,” Physica E., vol. 41, pp. 413–417, (2009). [197] J. B. Cui, Q. Zeng, and U. J. Gibson, “Synthesis and magnetic properties of Co-doped ZnO nanowires,” J. Appl. Phys., vol. 99, pp. 08M113, (2006). [198] H. W. Kim, M. A. Kebede, and H. S. Kim, “Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers,” Curr. Appl. Phys., vol. 10, pp. 60–63, (2010). [199] A. R. Nimbalkar, and M. G. Patil, “Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application,” Physica B Condens. Matter., vol. 527, pp. 7–15, (2017). [200] Q. Xiao, and T. Wang, “Improving the ethanol gas-sensing properties of porous ZnO microspheres by Co doping,” Mater. Res. Bull., vol. 48, pp. 2786–2791, (2013). [201] J. H. Lee, “Gas sensors using hierarchical and hollow oxide nanostructures: overview,” Sens. Actuators B Chem., vol. 140, pp. 319–336, (2009). [202] H. Haick, M. Ambrico, T. Ligonzo, R. T. Tung, and D. Cahen, “Controlling semiconductor/metal junction barriers by incomplete nondual molecular monolayers,” J. Am. Chem. Soc., vol. 128, pp. 6854–6869, (2006). [203] Q. L. Tan, J. H. Fang, W. Y. Liu, J. J. Xiong, and W. D. Zhang, “Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder,” Sensors., vol. 15, pp. 28502–28512, (2015). [204] C. Fan, F. Z. Sun, X. M. Wang, Z. Z. Huang, M. Keshvardoostchokami, P. Kumar, and B. Liu, “Synthesis of ZnO Hierarchical Structures and Their Gas Sensing Properties,” Nanomaterials., vol. 9, pp. 1277, (2019). [205] Y. T. Tsai, S. J. Chang, I. T. Tang, Y. J. Hsiao, and L. W. Ji, “Enhanced Detection of Ethanol in a Humid Ambient Using Al2O3-Doped Cactus-Like ZnO Nanoflowers With Gold Nanoparticles,” IEEE Trans. Device. Mater. Reliab., vol. 19, pp. 409–415, (2019). [206] S. B. Rana, R. P. P. Singh, and S. Arya, “Structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles,” J. Mater. Sci: Mater. Electron., vol. 28, pp. 2660–2672, (2017). [207] S. Arya, P. K. Lehana, and S. B. Rana, “Synthesis of Zinc Oxide Nanoparticles and Their Morphological, Optical, and Electrical Characterizations,” J. Electron. Mater., vol. 46, pp. 4604–4611, (2017). [208] Prerna, S. Arya, A. Sharma, B. Singh, A. Tomar, S. Singh, and R. Sharma, “Morphological and Optical Characterization of Sol-Gel Synthesized Ni-Doped ZnO Nanoparticles,” Integr. Ferroelectr., vol. 205, pp. 1–13, (2020). [209] Y. L. Chu, S. J. Young, L. W. Ji, T. T. Chu, and P. H. Chen, “Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators,” Energies, vol. 13, pp. 2731, (2020). [210] Y. C. Liang, and C. W. Chang, “Improvement of Ethanol Gas-Sensing Responses of ZnO-WO3 Composite Nanorods through Annealing Induced Local Phase Transformation,” Nanomaterials., vol. 9, pp. 669, (2019). [211] P. Rai, W. K. Kwak, and Y. T. Yu, “Solvothermal synthesis of ZnO nanostructures and their morphology dependent gas-sensing properties,” ACS Appl. Mater. Interfaces., vol. 5, pp. 3026–3032, (2013). [212] L. F. Chen, X. K. Tian, C. Yang, Y. Li, Z. X. Zhou, Y. X. Wang, and F. Xiang, “Highly selective and sensitive determination of copper ion based on a visual fluorescence method,” Sens. Actuators B Chem., vol. 240, pp. 66–75, (2017). [213] J. Ding, J. W. Zhu, P. C. Yao, J. Li, H. P. Bi, and X. Wang, “Synthesis of ZnO-Ag Hybrids and Their Gas-Sensing Performance toward Ethanol,” Ind. Eng. Chem. Res., vol. 54, pp. 8947–8953, (2015). [214] J. J. Xu, S. J. Li, L. Li, L. Y. Chen, and Y. F. Zhu, “Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors,” Ceram. Int., vol. 44, pp. 16773–16780, (2018). [215] J. Q. Xu, J. J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on ethanol sensing mechanism of ZnO-based gas sensors,” Sens. Actuators B Chem., vol. 132, pp. 334–339, (2008). [216] L. Liu, S. C. Li, J. Zhuang, L. Y. Wang, J. B. Zhang, H. Y. Li, Z. Liu, Y. Han, X. X. Jiang, and P. Zhang, “Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning,” Sens. Actuators B Chem., vol. 155, pp. 782–788, (2011). [217] A. Yu, J. S. Qian, H. Pan, Y. M. Cui, M. G. Xu, L. Tu, Q. L. Chai, and X. F. Zhou, “Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: Preparation, characterization and gas sensing property,” Sens. Actuators B Chem., vol. 158, pp. 9–16, (2011). [218] C. Q. Ge, C. S. Xie, and S. Z. Cai, “Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating,” Mat. Sci. Eng. B., vol. 137, pp. 53–58, (2007). [219] G. Godillot, L. Guerlou-Demourgues, L. Croguennec, K. M. Shaju, and C. Delmas, “Effect of Temperature on Structure and Electronic Properties of Nanometric Spinel-Type Cobalt Oxides,” J. Phys. Chem. C, vol. 117, pp. 9065–9075, (2013). [220] J. T. Chen, X. B. Yan, W. W. Liu, and Q. J. Xue, “The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation,” Sens. Actuators B Chem., vol. 160, pp. 1499–1503, (2011). [221] S. C. Luo, Y. Shen, Z. R. Wu, M. Cao, F. Gu, and L. J. Wang, “Enhanced ethanol sensing performance of mesoporous Sn-doped ZnO,” Mater. Sci. Semicond. Process., vol. 41, pp. 535–543, (2016). [222] N. Illyaskutty, H. Kohler, T. Trautmann, M. Schwotzer, and V. P. M. Pillai, “Enhanced ethanol sensing response from nanostructured MoO3:ZnO thin films and their mechanism of sensing,” J. Mater. Chem. C., vol. 1, pp. 3976–3984, (2013). [223] Y. Zong, Y. L. Cao, D. Z. Jia, S. J. Bao, and Y. Lu, “Facile synthesis of Ag/ZnO nanorods using Ag/C cables as templates and their gas-sensing properties,” Mater. Lett., vol. 64, pp. 243–245, (2010). [224] Y. Cai, H. Q. Fan, M. M. Xu, Q. Li, and C. B. Long, “Fast economical synthesis of Fe-doped ZnO hierarchical nanostructures and their high gas-sensing performance,” CrystEngComm., vol. 15, pp. 7339–7345, (2013). [225] M. C. Horrillo, J. Getino, J. Gutierrez, L. Ares, J. I. Robla, C. Garcia, and I. Sayago, “Measurements of VOCs in soils through a tin oxide multisensor system,” Sens. Actuators B Chem., vol. 43, pp. 193–199, (1997). [226] J. Getino, M. C. Horrillo, J. Gutierrez, L. Ares, J. I. Robla, C. Garcia, and I. Sayago, “Analysis of VOCs with a tin oxide sensor array,” Sens. Actuators B Chem., vol. 43, pp. 200–205, (1997). [227] N. G. Patel, P. D. Patel, and V. S. Vaishnav, “Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature,” Sens. Actuators B Chem., vol. 96, pp. 180–189, (2003). [228] Q. F. Liu, and J. R. Kirchhoff, “Amperometric detection of methanol with a methanoldehydrogenase modified electrode sensor,” J. Electroanal. Chem., vol. 601, pp. 125–131, (2007). [229] Q. Gao, W. T. Zheng, C. D. Wei, and H. M. Lin, “Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy,” J. Nanomater, vol. 2013, pp. 1–7, (2013). [230] Y. T. Tsai, S. J. Chang, I. T. Tang, Y. J. Hsiao, and L. W. Ji, “High Density Novel Porous ZnO Nanosheets Based on a Microheater Chip for Ozone Sensors,” IEEE Sens. J., vol. 18, pp. 5559–5565, (2018). [231] J. H. Yang, G. M. Liu, J. Lu, Y. F. Qiu, and S. H. Yang, “Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate,” Appl. Phys. Lett., vol. 90, pp. 103109, (2007). [232] Y. L. Chu, S. J. Young, L. W. Ji, I. T. Tang, and T. T. Chu, “Fabrication of Ultraviolet Photodetectors Based on Fe-Doped ZnO Nanorod Structures,” Sensors, vol. 20, pp. 3861, (2020). [233] S. J. Young, L. T. Lai, and W. L. Tang, “Improving the Performance of pH Sensors With One-Dimensional ZnO Nanostructures,” IEEE Sens. J., vol. 19, pp. 10972–10976, (2019). [234] L. T. Lai, S. J. Chang, C. C. Yang, and S. J. Young, “UV-Enhanced 2-D Nanostructured ZnO Field Emitter With Adsorbed Pt Nanoparticles,” IEEE Electron Device Lett., vol. 39, pp. 1932–1935, (2018). [235] Y. Mun, S. Park, S. An, C. Lee, and H. W. Kim, “NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation,” Ceram. Int., vol. 39, pp. 8615–8622, (2013). [236] T. L. Phan, S. C. Yu, R. Vincent, N. H. Dan, and W. S. Shi, “Photoluminescence properties of various CVD-grown ZnO nanostructures,” J. Lumin, vol. 130, pp. 1142–1146, (2010). [237] E. H. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee, and H. C. Swart, “Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure,” Superlattices Microstruct., vol. 139, pp. 106432, (2020). [238] D. Li, J. Ma, and K. Z. Chen, “2-D zinc ferrite “moss” furred on 3-D zinc oxide tetrapods to boost detection sensitivity of hydrogen sulfide,” J. Phys. Chem. Solids, vol. 148, pp. 109656, (2021). [239] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater., vol. 10, pp. 013001, (2009). [240] W. Z. Li, M. R. Wu, C. Y. Tung, C. Y. Huang, C. S. Tan, Y. S. Huang, L. J. Chen, and R. H. Horng, “Strain Control of a NO Gas Sensor Based on Ga-Doped ZnO Epilayers,” ACS Appl. Electron. Mater., vol. 2, pp. 1365–1372, (2020). [241] T. Y. Lai, T. H. Fang, Y. J. Hsiao, and C. A. Chan, “Characteristics of Au-doped SnO2–ZnO heteronanostructures for gas sensing applications,” Vacuum, vol. 166, pp. 155–161, (2019). [242] C. A. Jaramillo-Paez, J. A. Navioa, M. C. Hidalgo, and M. Macias, “ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates,” Catal. Today, vol. 313, pp. 12–19, (2018). [243] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties,” Nanatechnology, vol. 18, pp. 115603, (2007). [244] L. C. Damonte, G. N. Darriba, and M. Renteria, “Structural and electronic properties of Al-doped ZnO semiconductor nanopowders: Interplay between XRD and PALS experiments and first-principles/DFT modeling,” J. Alloys Compd., vol. 735, pp. 2471–2478, (2018). [245] D. V. Pandi, V. Saraswathi, N. Muthukumarasamy, S. Agilan, P. Balraju, and D. Velauthapillai, “C-axis oriented ZnO nanorods based quantum dot solar cells,” Opt. Mater., vol. 112, pp. 110774, (2021). [246] S. J. Young, and L. T. Lai, “UV Illumination and Au Nanoparticles Enhanced ZnO Nanorods Field Electron Emission Device,” IEEE Trans. Electron Devices, vol. 67, pp. 304−308, (2020). [247] X. P. Shen, L. J. Guo, G. X. Zhu, C. Y. Xi, Z. Y. Ji, and H. Zhou, “Facile synthesis andgas-sensing performance of Sr- or Fe-doped In2O3 hollow sub-microspheres,” RSC Adv., vol. 5, pp. 64228–64234, (2015). [248] L. H. Kathwate, G. Umadevi, P. M. Kulal, P. Nagaraju, D. P. Dubal, A. K. Nanjundan, and V. D. Mote, “Ammonia gas sensing properties of Al doped ZnO thin films,” Sens. Actuators A Phys., vol. 313, pp. 112193, (2006). [249] I. K. Cheng, C. Y. Lin, and F. M. Pan, “Gas sensing behavior of ZnO toward H2 at temperatures below 300°C and its dependence on humidity and Pt-decoration,” Appl. Surf. Sci, vol. 541, pp. 148551, (2021). [250] X. T. Xue, L. Y. Zhu, K. P. Yuan, C. Zeng, X. X. Li, H. P. Ma, H. L. Lu, and D. W. Zhang, “ZnO branched p-CuxO @n-ZnO heterojunction nanowires for improving acetone gas sensing performance,” Sens. Actuators B Chem., vol. 324, pp. 128729, (2020). [251] J. K. Radhakrishnan, M. Kumara, and Geetika, “Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO, and CO2,” Sensors International, vol. 2, pp. 100059, (2021). [252] C. M. Hung, H. V. Phuong, V. V. Thinh, L. T. Hong, N. T. Thang, N. H. Hanh, N. Q. Dich, N. V. Duy, N. V. Hieu, and N. D. Hoa, “Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gassensing performance,” Sens. Actuator A Phys., vol. 317, pp. 112454, (2021). [253] Q. Zhu, Y. M. Zhang, J. Zhang, Z. Q. Zhu, and Q. J. Liu, “A new and high response gas sensor for methanol using molecularly imprinted technique,” Sens. Actuators B Chem., vol. 207, pp. 398–403, (2015). [254] X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, and S. Wang, “3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors,” J. Mater. Chem., vol. 21, pp. 349–356, (2011). [255] A. Mirzaei, S. Park, H. Kheel, G. J. Sun, S. Lee, and C. Lee, “ZnO-capped nanorod gas sensors,” Ceram. Int, vol. 42, pp. 6187–6197, (2016). [256] J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao, “High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles,” Sens. Actuators B Chem., vol. 199, pp. 339–345, (2014). [257] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron., vol. 45, pp. 963–976, (2001). [258] S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, “Superminiature x-ray tube,” Appl. Phys. Lett., vol. 85, pp. 5679–5681, (2004). [259] X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanodevice motion at microwave frequencies,” Nature, vol. 421, pp. 496–496, (2003). [260] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature,” IEEE Trans. Electron Devices, vol. 61, pp. 4192–4196, (2014). [261] Z. H. Wang, C. C. Yang, H. C. Yu, H. T. Yeh, Y. M. Peng, and Y. K. Su, “Electron Field Emission Enhancement Based on Al-Doped ZnO Nanorod Arrays with UV Exposure,” IEEE Trans. Electron Devices, vol. 65, pp. 251–256, (2018). [262] L. T. Lai, S. J. Young, Y. H. Liu, Z. D. Lin, and S. J. Chang “UV Enhanced Field Emission Properties of ZnO Nanosheets With Different NaOH Concentration,” IEEE Trans. Nanotechnol., vol. 14, pp. 776–781, (2015). [263] R. Kurstjens, I. Vos, F. Dross, J. Poortmans, and R. Mertens, “Thermal Oxidation of a Densely Packed Array of Vertical Si Nanowires,” J. Electrochem. Soc., vol. 159, pp. H300–H306, (2012). [264] W. Y. Yin, B. Q. Wei, and C. W. Hu, “In situ growth of SnO2 nanowires on the surface of Au-coated Sn grains using water-assisted chemical vapor deposition,” Chem. Phys Lett. vol. 471, pp. 11–16, (2009). [265] C. Liu, Z. Li, and Z. Zhang, “Growth of [010] oriented α-MoO3 nanorods by pulsed electron beam deposition,” Appl. Phys. Lett., vol. 99, pp. 223104, (2011). [266] V. Balasubramani, S. Sureshkumar, T. S. Rao, and T. M. Sridhar, “Impedance Spectroscopy-Based Reduced Graphene Oxide Incorporated ZnO Composite Sensor for H2S Investigations,” ACS omega, vol. 4, pp. 9976–9982, (2019). [267] Y. T. Tsai, S. J. Chang, L. W. Ji, Y. J. Hsiao, and I. T. Tang, “Fast Detection and Flexible Microfluidic pH Sensors Based on Al Doped ZnO Nanosheets with a Novel Morphology,” ACS omega, vol. 4, pp. 19847–19855, (2019). [268] S. Kim, G. H. Kim, H. Woo, T. An, and G. Lim, “Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels,” ACS omega, vol. 5, pp. 3144–3150, (2019). [269] A. P. Ayanwale, and S. Y. Reyes-Lopez, “ZrO2−ZnO Nanoparticles as Antibacterial Agents,” ACS omega, vol. 4, pp. 19216–19224, (2019). [270] Y. L. Chu, S. J. Young, L. W. Ji, T. T. Chu, and C. H. Wu, “UV-Enhanced Field-Emission Performances of Pd-Adsorbed ZnO Nanorods through Photochemical Synthesis,” ECS J. Solid State Sci. Technol., vol. 10, pp. 017001, (2021). [271] M. Lorenz, A. Rahm, B. Q. Cao, J. Zuniga-Perez, E. M. Kaidashev, N. Zhakarov G. Wagner, T. Nobis, C. Czekalla, G. Zimmermann, and M. Grundmann, “Self-organized growth of ZnO-based nano-and microstructures,” Phys. Status Solidi B., vol. 247, pp. 1265–1281, (2010). [272] R. Yousefi, and B. Kamaluddin, “Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations,” J. Alloys Compd., vol. 479, pp. L11–L14, (2009). [273] O. Lupan, V. M. Guerin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporte, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobio. A-Chem., vol. 211, pp. 65–73, (2010). [274] G. T. Kim, U. Waizmann, and S. Roth, “Simple efficient coordinate markers for investigating synthetic nanofibers,” Appl. Phys. Lett., vol. 79, pp. 3497–3499, (2001). [275] G. Corro, J. A. Flores, F. Pacheco-Aguirre, U. Pal, F. Banuelos, R. Torralba, and O. Olivares-Xometl, “Effect of the Electronic State of Cu, Ag, and Au on Diesel Soot Abatement: Performance of Cu/ZnO, Ag/ZnO, and Au/ZnO Catalysts,” ACS omega, vol. 4, pp. 5795–5804, (2019). [276] C. L. Hsu, Y. C. Wang, S. P. Chang, and S. J. Chang, “Ultraviolet/Visible Photodetectors Based on p–n NiO/ZnO Nanowires Decorated with Pd Nanoparticles,” ACS Appl. Nano Mater., vol. 2, pp. 6343–6351, (2019). [277] H. Yoshiki, K. Hashimoto, and A. Fujishima, “Reaction Mechanism of Electraless Metal Deposition Using ZnO Thin Film (I): Process of Catalyst Formation,” J. Electrochem. Soc., vol. 142, pp. 428–432, (1995). [278] Y. L. Chu, S. J. Young, L. W. Ji, T. T. Chu, K. T. Lam, Y. J. Hsiao, I. T. Tang, and T. H. Kuo, “Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays,” J. Electrochem. Soc., vol. 167, pp. 117503, (2020). [279] S. J. Young, and Y. L. Chu, “Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor,” J. Electrochem. Soc., vol. 167, pp. 147508, (2020). [280] F. S. Hashim, A. F. Alkaim, S. J. Salim, and A. H. O. Alkhayatt, “Effect of (Ag, Pd) doping on structural, and optical properties of ZnO nanoparticales: As a model of photocatalytic activity for water pollution treatment,” Chem. Phys. Lett., vol. 737, pp. 136828, (2019). [281] W. C. Yen, H. Medina, C. W. Hsu, and Y. L. Chueh, “Conformal graphene coating on high-aspect ratio Si nanorod arrays by a vapor assisted method for field emitter,” RSC Adv., vol. 4, pp. 27106–27111, (2014). [282] X. T. Zhou, T. H. Lin, Y. H. Liu, C. X. Wu, X. Y. Zeng, D. Jiang, Y. A. Zhang, and T. L. Guo, “Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation,” ACS Appl. Mater. Interf., vol. 5, pp. 10067–10073, (2013). [283] J. J. Ding, H. X. Chen, L. Ma, H. W. Fu, and X. J. Wang, “Field emission of graphene oxide decorated ZnO nanorods grown on Fe alloy substrates,” J. Alloys Compd., vol. 729, pp. 538–544, (2017). [284] S. J. Young, Y. H. Liu, and J. T. Chien, “Improving Field Electron Emission Properties of ZnO Nanosheets with Ag Nanoparticles Adsorbed by Photochemical Method,” ACS Omega, vol. 3, pp. 8135–8140, (2018). [285] S. J. Young, and T. H. Wang, “ZnO Nanorods Adsorbed with Photochemical Ag Nanoparticles for IOT and Field Electron Emission Application,” J. Electrochem. Soc., vol. 165, pp. B3043–B3045, (2018). [286] L. A. Ma, W. Z. Lai, Z. H. Wei, Y. B. Chen, L. Sun, X. Y. Ye, H. X. Chen, and Q. T. Wang, “Synthesis, structure and optimized field emission properties of highly oriented ZnO/Pt core–shell nanorods on a Zn substrate,” CrystEngComm., vol. 22, pp. 4630–4639, (2020). [287] S. J. Young, C. C. Yang, and L. T. Lai, “Review–Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors,” J. Electrochem. Soc., vol. 164, pp. B3013–B3028, (2017). [288] G. Katwal, M. Paulose, I. A. Rusakova, J. E. Martinez, and O. K. Varghese, “Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection,” Nano. Lett., vol. 16, pp. 3014–3021, (2016). [289] S. J. Young, and Y. H. Liu, “Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure,” Microelectron. Eng., vol. 148, pp. 14–16, (2015). [290] S. N. Sarangi, S. Nozaki, and S. N. Sahu, “ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor,” J. Biomed. Nanotechnol., vol. 11, pp. 988–996, (2015). [291] M. H. Jung, H. G. Yun, S. Kim, and M. G. Kang, “ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells,” Electrochim. Acta., vol. 22, pp. 6563–6569, (2010). [292] T. D. Dongale, K. V. Khot, S. S. Mali, P. S. Patil, P. K. Gaikwad, R. K. Kamat, and P. N. Bhosale, “Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route,” Mat. Sci. Semicon. Proc., vol. 40, pp. 523–526, (2015). [293] S. S. Warule, N. S. Chandhari, R. T. Shisode, K. V. Desa, B. B. Kale, and M. A. More, “Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour,” CrystEngComm., vol. 17, pp. 140–148, (2015). [294] A. Kathalinagam, and H. S. Kim, “Coulomb blockade and plasmonic nanoantenna effect in back gated ZnO nanorod FET,” Optik., vol. 13, pp. 5226–5229, (2016). [295] R. Borgohain, and S. Baruah, “Development and Testing of ZnO Nanorods Based Biosensor on Model Gram-Positive and Gram-Negative Bacteria,” IEEE Sens. J., vol. 17, pp. 2649–2653, (2017). [296] K. Yadav, S. K. Gahlaut, B. Mehta, and J. Singh, “Photoluminescence based H2 and O2 gas sensing by ZnO nanowires,” Appl. Phys. Lett., vol. 108, pp. 071602, (2016). [297] M. Ahmad, and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem., vol. 21, pp. 599–614, (2011). [298] W. A. Deheer, A. Chatelain, and D. A. Ugarte, “Carbon Nanotube Field-Emission Electron Source,” Science, vol. 270, pp. 1179–1180, (1995). [299] Y. B. Guo, H. B. Liu, Y. J. Li, G. X. Li, Y. J. Zhao, Y. L. Song, and Y. L. Li, “Controlled Core-Shell Structure for Efficiently Enhancing Field-Emission Properties of Organic-Inorganic Hybrid Nanorods,” J. Phys. Chem. C, vol. 113, pp. 12669–12673, (2009). [300] C. L. Hsu, and Y. C. Tsai, “Field Emission of ZnO Nanowires in Low Vacuum Following Various Enhancements Made by Exposure to UV,” IEEE Trans. Nanotechnol., vol. 11, pp. 1110–1116, (2012). [301] Y. M. Chang, M. L. Lin, T. Y. Lai, H. Y. Lee, C. M. Lin, Y. C. S. Wu, and J. Y. Juang, “Field Emission Properties of Gold Nanoparticle-Decorated ZnO Nanopillars,” ACS Appl. Mater. Inter., vol. 4, pp. 6676–6681, (2012). [302] S. Sridhar, C. Tiwary, S. Vinod, J. J. Taha-Tijerina, S. Sridhar, K. Kalaga, B. Sirota, A. H. C. Hart, S. Ozden, R. K. Sinha, R. V. Harsh, W. B. Choi, K. Kordas, and P. M. Ajayan, “Field Emission with Ultralow Turn On Voltage from Metal Decorated Carbon Nanotubes,” ACS Nano, vol. 8, pp. 7763–7770, (2014). [303] H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” CrystEngComm., vol. 15, pp. 5764–5775, (2013). [304] H. P. He, Q. Yang, J. R. Wang, and Z. Z. Ye, “Layer-structured ZnO nanowire arrays with dominant surface and acceptor-related emissions,” Mater. Lett., vol. 65, pp. 1351–1354, (2011). [305] C. L. Hsu, C. W. Su, and T. J. Hsueh, “Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure,” Rsc. Adv., vol. 4, pp. 2980–2983, (2014). [306] K. Mahmood, S. B. Park, and H. J. Sung, “Retracted Article: Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures,” J. Mater. Chem. C, vol. 1, pp. 3138–3149, (2013). [307] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897−1899, (2001). [308] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys Chem. B, vol. 107, pp. 659–663, (2003). [309] Y. Al-Hadeethi, A. Umar, A. A. Ibrahim, S. H. Al-Heniti, R. Kumar, S. Baskoutas, and B. M. Raffah, “Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles,” Ceram Int., vol. 43, pp. 6765–6770, (2017). [310] C. Li, G. J. Fang, S. Xu, D. S. Zhao, and X. Z. Zhao, “Phase-segregation assisted growth of quasi-aligned ZnO nanorods on a Mg0.6Zn0.4O-coated Si substrate by thermal evaporation,” Nanotechnology, vol. 17, pp. 5367–5372, (2006). [311] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757, (2002). [312] J. Singh, P. K. Srivastava, P. K. Siwach, H. K. Singh, R. S. Tiwari, and O. N. Srivastava, “PLD Deposited ZnO Films on Different Substrates and Oxygen Pressure: A Study of Surface Morphology and Optical Properties,” Sci. Adv. Mater., vol. 4, pp. 467–474, (2012). [313] J. Li, J. Wang, Y. L. Pei, and G. Wang, “Research and optimization of ZnO-MOCVD process parameters using CFD and genetic algorithm,” Ceram. Int, vol. 46, pp. 685–695, (2020). [314] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices Microstruct., vol. 38, pp. 265–271, (2005). [315] J. Rosowska, J. Kaszewski, B. Witkowski, L. Wachnicki, I. Kuryliszyn-Kudelska, and M. Godlewski, “The effect of iron content on properties of ZnO nanoparticles prepared by microwave hydrothermal method,” Opt. Mater., vol. 109, pp. 110089, (2020). [316] A, Qurashi, “Structural and optical properties of ultrathin ZnO nanoneedles grown on GaN substrate by hybrid approach,” J. Phys. Chem. Solids, vol. 74, pp. 166–169, (2013). [317] G. Machado, D. N. Guerra, D. Leinen, J. R. Ramos-Barrado, R. E. Marotti, and E. A. Dalchiele, “Indium doped zinc oxide thin films obtained by electrodeposition,” Thin Solid Films, vol. 490, pp. 124–131, (2005). [318] M. Kashif, M. E. Ali, S. M. Usman Ali, and U. Hashim, “Sol–gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications,” Ceram. Int., vol. 39, pp. 6461–6466, (2013). [319] S. J. Young, and Y. H. Liu, “Field emission properties of Al-doped ZnO nanosheet based on field emitter device with UV exposure,” RSC Adv., vol. 7, pp. 14219–14223, (2017). [320] S. J. Young, Y. H. Liu, and L. T. Lai, “Fabrication and Characterization of Aluminum-Doped ZnO Nanosheets for Field Emitter Application,” ECS J. Solid State Sci. Technol., vol. 6, pp. P243–P246, (2017). [321] S. J. Young, and L. T. Lai, “UV Enhanced Field Emission Properties of ZnO Nanosheets Grown on a Si Substrate,” IEEE Photon. Technol. Lett., vol. 28, pp. 63–66, (2016). [322] Y. H. Liu, S. J. Chang, and S. J. Young, “Enhanced Field Emitter Base on Indium-Doped ZnO Nanostructures by Aqueous Solution,” ECS J. Solid State Sci. Technol., vol. 5, pp. R203–R205, (2016). [323] C. C. Yang, Y. K. Su, M. Y. Chuang, H. C. Yu, and C. H. Hsiao, “Enhanced Field Emission Properties of Ag Nanoparticle-Decorated ZnO Nanorods Under Ultraviolet Illumination,” IEEE Trans. Electron Devices, vol. 62, pp. 2300–2305, (2015). [324] M. Ahmad, H. Y. Sun, and J. Zhu, “Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires,” ACS Appl. Mater. Interfaces, vol. 3, pp. 1299–1305, (2011). [325] S. J. Young, and L. T. Lai, “Electron Field Emission Enhancement Based on Pt-Adsorbed ZnO Nanorods with UV Irradiation,” IEEE Trans. Nanotechnol., vol. 17, pp. 1063–1068, (2018). [326] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, “UV Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets,” IEEE Trans. Electron Devices, vol. 62, pp. 2033–2037, (2015). [327] D. K. T. Ng, M. H. Hong, L. S. Tan, Y. W. Zhu, and C. H. Sow, “Field emission enhancement from patterned gallium nitride nanowires,” Nanotechnology, vol. 18, pp. 375707, (2007). [328] N. Pan, H. Z. Xue, M. H. Yu, X. F. Cui, X. P. Wang, J. G. Hou, J. X. Hunag, and S. Z. Deng, “Tip-morphology-dependent field emission from ZnO nanorod arrays,” Nanotechnology, vol. 21, pp. 225707, (2010). [329] M. Hafeez, T. Y. Zhai, A. S. Bhatti, Y. Bando, and D. Golberg, “Enhance Field Emission, and Optical Properties of Controlled Tapered ZnS Nanostructure,” J. Phys. Chem. C, vol. 116, pp. 8297–8304, (2012). [330] T. Y. Tsai, S. J. Chang, W. Y. Weng, S. G. Li, S. Liu, C. L. Hsu, H. T. Hsueh, and T. J. Hsueh, “GaN nanowire field emitters with the adsorption of Au nanoparticles,” IEEE Electron Device Lett., vol. 34, pp. 553–555, (2013). [331] X. J. Xu, C. C. Tang, H. B. Zeng, T. Y. Zhai, S. Q. Zhang, H. J. Zhao, Y. Bando, and D. Golberg, “Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes,” ACS Appl. Mater. Interf., vol. 3, pp. 1352–1358, (2011). [332] C. Zhang, J. Chen, W. Xuan, S. Huang, B. You, W. Li, L. Sun, H. Jin, X. Wang, S. Dong, J. Luo, A. J. Flewitt, and Z. L. Wang, “Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors,” Nat. Commun., vol. 11, pp. 1–10, (2020). [333] J. Liu, P. Fei, J. H. Song, X. D. Wang, C. S. Lao, R. Tummala, and Z. L. Wang, “Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator,” Nano. Lett., vol. 8, pp. 328–332, (2008). [334] L. N. Gao, X. F. Wang, Z. Xie, W. F. Song, L. J. Wang, X. Wu, F. Y. Qu, D. Chen, and G. Z. Shen, “High-Performance Energy-Storage Devices Based on WO3 Nanowire Arrays/Carbon Cloth Integrated Electrodes,” J. Mater. Chem. A, vol. 1, pp. 7167–7173, (2013). [335] E. Kar, N. Bose, B. Dutta, S. Banerjee, N. Mukherjee, and S. Mukherjee, “2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester,” Energ. Convers. Manage., vol. 184, pp. 600–608, (2019). [336] X. D. Wang, Y. F. Gao, Y. G. Wei, and Z. L. Wang, “Output of an Ultrasonic Wave-Driven Nanogenerator in a Confined Tube,” Nano. Res., vol. 2, pp. 177–182, (2009). [337] Q. Y. Wang, Y. Qiu, D. C. Yang, B. Li, X. T. Zhang, Y. Tang, and L. Z. Hu, “Improvement in piezoelectric performance of a ZnO nanogenerator by modulating interface engineering of CuO-ZnO heterojunction,” Appl. Phys. Lett., vol. 113, pp. 053901, (2018). [338] A. K. Anbalagan, S. Gupta, A. kumar, S. C. Haw, S. S. Kulkarni, N. H. Tai, F. G. Tseng, K. C. Hwang, and C. H. Lee, “Gamma Ray Irradiation Enhances the Linkage of Cotton Fabrics Coated with ZnO Nanoparticles,” ACS Omega, vol. 5, pp. 15129–15135, (2020). [339] I. B. Dauda, M. Yusuf, S. Gbadamasi, M. Bello, A. Y. Atta, B. O. Aderemi, and B. Y. Jibril, “Highly Selective Hierarchical ZnO/ZSM-5 Catalysts for Propane Aromatization,” ACS Omega, vol. 5, pp. 2725–2733, (2020). [340] C. F. Liu, Y. J. Lu, and C. C. Hu, “Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting,” ACS Omega, vol. 3, pp. 3429–3439, (2018). [341] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, “ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors,” J. Phys. Chem. C, vol. 113, pp. 10975–10980, (2009). [342] S. Nicolay, S. Fay, and C. Ballif, “Growth Model of MOCVD Polycrystalline ZnO,” Cryst. Growth Des., vol. 9, pp. 4957–4962, (2009). [343] C. Y. Chang, H. M. Huang, Y. P. Lan, T. C. Lu, L. W. Tu, and W. F. Hsieh, “Study of Nonpolar GaN/ZnO Heterostructures Grown by Molecular Beam Epitaxy,” Cryst. Growth Des., vol. 13, pp. 3098–3102, (2013). [344] K. M. McPeak, and J. B. Baxter, “ZnO Nanowires Grown by Chemical Bath Deposition in a Continuous Flow Microreactor,” Cryst. Growth Des., vol. 9, pp. 4538–4545, (2009). [345] M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley, and S. R. P. Silva, “Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors,” J. Phys. Chem. C, vol. 117, pp. 17850–17858, (2013). [346] H. T. Lin, Y. S. Wu, X. Q. Cao, and H. B. Fu, “Engineering of Interfacial Electron Transfer from Donor−Acceptor Type Organic Semiconductor to ZnO Nanorod for Visible-Light Detection,” J. Phys. Chem. C, vol. 116, pp. 21657–21663, (2012). [347] W. Liu, D. Gu, and X. G. Li, “Ultrasensitive NO2 Detection Utilizing Mesoporous ZnSe/ZnO Heterojunction-Based Chemiresistive-Type Sensors,” ACS Appl. Mater. Interfaces, vol. 11, pp. 29029–29040, (2019). [348] F. Yang, W. H. Liu, X. W. Wang, J. Zheng, R. Y. Shi, H. Zhao, and H. Q. Yang, “Controllable Low Temperature Vapor-Solid Growth and Hexagonal Disk Enhanced Field Emission Property of ZnO Nanorod Arrays and Hexagonal Nanodisk Networks,” ACS Appl. Mater. Interfaces, vol. 4, pp. 3852–3859, (2012). [349] C. H. Liu, A. F. Yu, M. Z. Peng, M. Song, W. Liu, Y. Zhang, and J. Y. Zhai, “Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification,” J. Phys. Chem. C, vol. 120, pp. 6971–6977, (2016). [350] C. L. Hsu, and K. C. Chen, “Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency,” J. Phys. Chem. C, vol. 116, pp. 9351–9355, (2012). [351] Y. H. Ko, G. Nagaraju, S. H. Lee, and J. S. Yu, “PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays,” ACS Appl. Mater. Interfaces, vol. 6, pp. 6631–6637, (2014) [352] Y. Yang, W. X. Guo, K. C. Pradel, G. Zhu, Y. S. Zhou, Y. Zhang, Y. F. Hu, L. Lin, and Z. L. Wang, “Pyroelectric nanogenerators for harvesting thermoelectric energy,” Nano. Lett., vol. 12, pp. 2833–2838, (2012). [353] C. C. Chen, T. L. Wu, T. H. Meen, C. Y. Chen, C. H. Su, J. K. Tsai, C. Y. Lee, C. H. Lee, and D. S. Liu, “ZnO Nanogenerator Prepared from ZnO Nanorods Grown by Hydrothermal Method,” Sens. Mater., vol. 31, pp. 1083–1089, (2019). [354] Z. L. Wang, and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, pp. 242–246 (2006). [355] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science, vol. 316, pp. 102–105, (2007). [356] Y. F. Hu, Y. Zhang, C. Xu, G. A. Zhu, and Z. L. Wang, “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display,” Nano. Lett., vol. 10, pp. 5025–5031, (2010). [357] S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus Doped Zn1-xMgxO Nanowire Arrays,” Nano. Lett., vol. 9, pp. 3877–3882, (2009). [358] T. M. Zhao, Y. M. Fu, Y. Y. Zhao, L. L. Xing, and X. Y. Xue, “Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response,” J. Alloys Compd., vol. 648, pp. 571–576, (2015). [359] C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik, vol. 127, pp. 8317–8325, (2016). [360] Y. Q. Li, K. Yong, H. M. Xiao, W. J. Ma, G. L. Zhang, and S. Y. Fu, “Preparation and electrical properties of Ga-doped ZnO nanoparticles by a polymer pyrolysis method,” Mater. Lett., vol. 64, pp. 1735–1737, (2010). [361] J. H. Lee, K. Y. Lee, B. Kumar, and S. W. Kim, “Synthesis of Ga-Doped ZnO Nanorods Using an Aqueous Solution Method for a Piezoelectric Nanogenerator,” J. Nanosci. Nanotechnol., vol. 12, pp. 3430–3433, (2012). [362] J. Guo, J. Zheng, X. Z. Song, and K. Sun, “Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method,” Mater. Lett., vol. 97, pp. 34–36, (2013). [363] C. C. Yang, Y. K. Su, M. Y. Chuang, T. H. Kao, H. C. Yu, and C. H. Hsiao, “The Effect of Ga Doping Concentration on the Low-Frequency Noise Characteristics and Photoresponse Properties of ZnO Nanorods-Based UV Photodetectors,” IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 3800707, (2015). [364] S. J. Young, and C. L. Chiou, “Synthesis and optoelectronic properties of Ga-doped ZnO nanorods by hydrothermal method,” Microsyst. Technol., vol. 24, pp. 103–107, (2018). [365] H. H. Wang, S. Baek, J. J. Song, J. Lee, and S. W. Lim, “Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays,” Nanotechnology, vol. 19, pp. 075607, (2008). [366] A. Mezni, A. Mlayah, V. Serin, and L. S. Smiri, “Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process,” Mater. Chem. Phys., vol. 147, pp. 496–503, (2014). [367] G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale, vol. 6, pp. 1840–1847, (2014). [368] C. H. Hsiao, C. S. Huang, S. J. Young, J. J. Guo, C. W. Liu, and S. J. Chang, “Optical and Structural Properties of Ga-Doped ZnO Nanorods,” Journal of Nanosci. and Nanotechnol., vol. 13, pp. 8320–8324, (2013). [369] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., vol. 68, pp. 403–405, (1996). [370] S. K. Arya, S. S. Danewalia, Manju Arora, and K. Singh, “Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3−Li2O−ZnO−V2O5 Glasses,” J. Phys. Chem. B, vol. 120, pp. 12168–12176, (2016). [371] Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of Highly Conductive Ga-Doped ZnO Nanoneedles,” ACS Appl. Mater. Interfaces, vol. 7, pp. 10525–10533, (2015). [372] M. J. Zhou, H. J. Zhu, Y. Jiao, Y. Y. Rao, S. Hark, Y. Liu, L. M. Peng, and Q. Li, “Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates,” J. Phys. Chem. C, vol. 113, pp. 8945–8947, (2009). [373] J. X. Duan, Q. Xiong, J. H. Hu, and H. Wang, “Electric-Field-Assisted Growth of Ga-Doped ZnO Nanorods Arrays for Dye-Sensitized Solar Cells,” J. power energy eng., vol. 3, pp. 11–18, (2015). [374] S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim, and J. M. Kim, “Sound-Driven Piezoelectric Nanowire-Based Nanogenerators,” Adv. Mater., vol. 22, pp. 4726–4730, (2010). [375] M. R. Zakaria, S. Johari, M. H. Ismail, and U. Hashim, “Characterization of Zinc Oxide (ZnO) piezoelectric properties for Surface Acoustic Wave (SAW) device,” EPJ Web of Conferences, vol. 162, pp. 01055, (2017). [376] C. J. Hu, Y. H. Lin, C. W. Tang, M. Y. Tsai, W. K. Hsu, and H. F. Kuo, “ZnO-coated carbon nanotubes: Flexible piezoelectric generators,” Adv. Mater., vol. 23, pp. 2941–2945, (2011). [377] M. Saha, S. Ghosh, V. D. Ashok, and S. K. De, “Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals,” Phys. Chem. Chem. Phys., vol. 17, pp. 16067–16079, (2015). [378] S. J. Young, and Y. H. Liu, “Enhanced Field Emission Properties of Two-Dimensional ZnO Nanosheets Under UV illumination,” IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 9100304, (2015). [379] H. H. Gullu, M. Isik, N. M. Gasanly, and M. Parlak, “Temperature-dependent optical characteristics of sputtered Ga-doped ZnO thin films,” Mater. Sci. Eng. C, vol. 263, pp. 114834, (2021). [380] S. J. Young, and Y. L. Chu, “Hydrothermal Synthesis and Improved CH3OH-Sensing Performance of ZnO Nanorods With Adsorbed Au NPs,” IEEE Trans. Electron Devices, vol. 68, pp. 1886–1891, (2021). [381] Y. Xi, D. H. Lien, R. S. Yang, C. Xu, and C. G. Hu, “Direct-current nanogenerator based on ZnO nanotube arrays,” Phys. Status Solidi RRL, vol. 5, pp.77–79, (2011). [382] W. Y. Chang, T. H. Fang, and J. H. Tsai, “Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators,” J. Low Temp. Phys., vol. 178, pp. 174–187, (2015). [383] A. Kumar, H. Gullapalli, K. Balakrishnan, A. Botello-Mendez, R. Vajtai, M. Terrones, and P. M. Ajayan, “Flexible ZnO-Cellulose Nanocomposite for Multisource Energy Conversion,” small, vol. 7, pp. 2173–2178, (2011).
|