|
[1] R. Baskar, K. A. Lee, R. Yeo, and K.-W. Yeoh, "Cancer and radiation therapy: current advances and future directions," International journal of medical sciences, vol. 9, p. 193, 2012. [2] S. P. Jackson and J. Bartek, "The DNA-damage response in human biology and disease," Nature, vol. 461, pp. 1071-1078, 2009. [3] T. J. Whelan, J.-P. Pignol, M. N. Levine, J. A. Julian, R. MacKenzie, S. Parpia, et al., "Long-term results of hypofractionated radiation therapy for breast cancer," New England Journal of Medicine, vol. 362, pp. 513-520, 2010. [4] A. C. Begg, F. A. Stewart, and C. Vens, "Strategies to improve radiotherapy with targeted drugs," Nature Reviews Cancer, vol. 11, pp. 239-253, 2011. [5] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, "Machine learning for medical imaging," Radiographics, vol. 37, pp. 505-515, 2017. [6] M. L. Giger, "Machine learning in medical imaging," Journal of the American College of Radiology, vol. 15, pp. 512-520, 2018. [7] J. Ferlay, "GLOBOCAN 2008 v1. 2, Cancer incidence and mortality world-wide: IARC Cancer Base No. 10," iarc, 2010. [8] C. L. Chaffer and R. A. Weinberg, "A perspective on cancer cell metastasis," science, vol. 331, pp. 1559-1564, 2011. [9] J. Sia, R. Szmyd, E. Hau, and H. E. Gee, "Molecular mechanisms of radiation-induced cancer cell death: A primer," Frontiers in cell and developmental biology, vol. 8, p. 41, 2020. [10] G. C. Barnett, C. M. West, A. M. Dunning, R. M. Elliott, C. E. Coles, P. D. Pharoah, et al., "Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype," Nature Reviews Cancer, vol. 9, pp. 134-142, 2009. [11] G. Ross, "Induction of cell death by radiotherapy," Endocrine-related cancer, vol. 6, pp. 41-44, 1999. [12] S. H. Giordano, Y.-F. Kuo, J. L. Freeman, T. A. Buchholz, G. N. Hortobagyi, and J. S. Goodwin, "Risk of cardiac death after adjuvant radiotherapy for breast cancer," Journal of the National Cancer Institute, vol. 97, pp. 419-424, 2005. [13] A. M. Rose-Ped, L. A. Bellm, J. B. Epstein, A. Trotti, C. Gwede, and H. J. Fuchs, "Complications of radiation therapy for head and neck cancers: the patient’s perspective," Cancer nursing, vol. 25, pp. 461-467, 2002. [14] C. E. Stubbe and M. Valero, "Complementary strategies for the management of radiation therapy side effects," Journal of the advanced practitioner in oncology, vol. 4, p. 219, 2013. [15] S. M. Bentzen, "Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology," Nature Reviews Cancer, vol. 6, pp. 702-713, 2006. [16] M. S. Gujral, P. M. Patnaik, R. Kaul, H. K. Parikh, C. Conradt, C. P. Tamhankar, et al., "Efficacy of hydrolytic enzymes in preventing radiation therapy-induced side effects in patients with head and neck cancers," Cancer chemotherapy and pharmacology, vol. 47, pp. S23-S28, 2001. [17] S. Kumar, E. Juresic, M. Barton, and J. Shafiq, "Management of skin toxicity during radiation therapy: a review of the evidence," Journal of medical imaging and radiation oncology, vol. 54, pp. 264-279, 2010. [18] A. Yala, T. Schuster, R. Miles, R. Barzilay, and C. Lehman, "A deep learning model to triage screening mammograms: a simulation study," Radiology, vol. 293, pp. 38-46, 2019. [19] E. J. Hwang, J. G. Nam, W. H. Lim, S. J. Park, Y. S. Jeong, J. H. Kang, et al., "Deep learning for chest radiograph diagnosis in the emergency department," Radiology, vol. 293, pp. 573-580, 2019. [20] M. R. Arbabshirani, B. K. Fornwalt, G. J. Mongelluzzo, J. D. Suever, B. D. Geise, A. A. Patel, et al., "Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration," NPJ digital medicine, vol. 1, pp. 1-7, 2018. [21] Y. Ding, J. H. Sohn, M. G. Kawczynski, H. Trivedi, R. Harnish, N. W. Jenkins, et al., "A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain," Radiology, vol. 290, pp. 456-464, 2019. [22] A. Parakh, H. Lee, J. H. Lee, B. H. Eisner, D. V. Sahani, and S. Do, "Urinary stone detection on CT images using deep convolutional neural networks: evaluation of model performance and generalization," Radiology: Artificial Intelligence, vol. 1, p. e180066, 2019. [23] D. B. Larson, M. C. Chen, M. P. Lungren, S. S. Halabi, N. V. Stence, and C. P. Langlotz, "Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs," Radiology, vol. 287, pp. 313-322, 2018. [24] P. Schelb, S. Kohl, J. P. Radtke, M. Wiesenfarth, P. Kickingereder, S. Bickelhaupt, et al., "Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment," Radiology, vol. 293, pp. 607-617, 2019. [25] S. Soffer, A. Ben-Cohen, O. Shimon, M. M. Amitai, H. Greenspan, and E. Klang, "Convolutional neural networks for radiologic images: a radiologist’s guide," Radiology, vol. 290, pp. 590-606, 2019. [26] C. Ricciardi, K. J. Edmunds, M. Recenti, S. Sigurdsson, V. Gudnason, U. Carraro, et al., "Assessing cardiovascular risks from a mid-thigh CT image: a tree-based machine learning approach using radiodensitometric distributions," Scientific reports, vol. 10, pp. 1-13, 2020. [27] T.-T. Zhai, L. V. van Dijk, B.-T. Huang, Z.-X. Lin, C. O. Ribeiro, C. L. Brouwer, et al., "Improving the prediction of overall survival for head and neck cancer patients using image biomarkers in combination with clinical parameters," Radiotherapy and Oncology, vol. 124, pp. 256-262, 2017. [28] M. Tajdari, A. Pawar, H. Li, F. Tajdari, A. Maqsood, E. Cleary, et al., "Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine learning analysis and prediction," Computer methods in applied mechanics and engineering, vol. 374, p. 113590, 2021. [29] M. J. Willemink, W. A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey, et al., "Preparing medical imaging data for machine learning," Radiology, vol. 295, pp. 4-15, 2020. [30] R. C. Gonzalez and R. E. Woods, "Digital image processing," ed: Prentice hall Upper Saddle River, NJ, 2002. [31] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE transactions on information theory, vol. 13, pp. 21-27, 1967. [32] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees: CRC press, 1984. [33] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, pp. 273-297, 1995. [34] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001. [35] J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of statistics, pp. 1189-1232, 2001. [36] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. [37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., "Lightgbm: A highly efficient gradient boosting decision tree," Advances in neural information processing systems, vol. 30, pp. 3146-3154, 2017. [38] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, "CatBoost: unbiased boosting with categorical features," arXiv preprint arXiv:1706.09516, 2017. [39] T. Maruyama, N. Hayashi, Y. Sato, S. Hyuga, Y. Wakayama, H. Watanabe, et al., "Comparison of medical image classification accuracy among three machine learning methods," Journal of X-ray Science and Technology, vol. 26, pp. 885-893, 2018. [40] S. S. Yadav and S. M. Jadhav, "Deep convolutional neural network based medical image classification for disease diagnosis," Journal of Big Data, vol. 6, pp. 1-18, 2019. [41] D. F. Bauer, T. Russ, B. I. Waldkirch, W. P. Segars, L. R. Schad, F. G. Zöllner, et al., "Generation of Multimodal Ground Truth Datasets for Abdominal Medical Image Registration Using CycleGAN," arXiv preprint arXiv:2012.01582, 2020. [42] N. K. Singh and K. Raza, "Medical Image Generation Using Generative Adversarial Networks: A Review," Health Informatics: A Computational Perspective in Healthcare, pp. 77-96, 2021.
|