一、中文部分
朱斌妤、黃仟文、翁少白(2008),以科技接受模式探討即時交通資訊系統之使用意願,電子商務學報,10 卷 1 期,173-200。
吳思漢(2021) , 新型享樂動機系統接受模型暨心流理論探討遊樂產業導入虛擬實境科技-以國立海洋生物博物館VR體驗館為例,義守大學工業管理學系博士論文。呂淳瑜(2020) ,知覺旅遊風險、健康信念、預防態度與行為之研究—以新型冠狀病毒為例,銘傳大學觀光事業學系碩士班碩士論文。李明穎 (2014) ,科學民主化下科技議題的風險治理: 探討國光石化廠開發案的科技官僚風險溝通, 公眾風險感知與公眾動員. 思與言:人文與社會科學期刊 ; 52卷4期, 111 - 159。
李長緯(2018) ,感知易用性、感知有用性、使用態度與行為意圖之研究-以街口支付為例,實踐大學企業管理學系碩士班碩士論文。李苔寧(2010),風險及利益知覺對信任與因應行為之影響-以鹿與羊隻農民飼養戶為例,國立臺北大學金融與合作經營學系碩士論文。
李國瑋、袁本麗(2012),知識地圖系統-規劃、建置與使用者接受度評估,資訊管理展望,14 卷 1、2 期,53-78。
李億貞(2010) ,主管領導型態、教職員工自我效能與工作績效之相關性研究-以某私立完全中學為例,桃園縣萬能科技大學碩士論文。
沈慶盈(2007) ,談社會工作自我效能的提升,社區發展季刊,120,13-5。
林秀英 (2015) ,風起雲湧的行動支付競賽,臺灣經濟研究月刊,38(5),55-63。doi:10.29656/term.201505.0009
林宗賢(2019) ,知覺便利性、自我效能感與 APP 預售商品購買意願關聯之研究,國立高雄科技大學行銷與流通管理系碩士論文。林淳琪(2021) ,數位貨幣使用意圖之研究,國立臺北商業大學企業管理系(所)碩士論文。俞錚蓉、謝俊宏(2014),企業導入 IFRS 轉換平台意願之相關研究,建國科大社會人文期刊,33 卷 1 期,35-53。
洪新原、梁定澎、張嘉銘(2005),科技接受模式之彙總研究,資訊管理學報,12 卷 4 期,211-234。
苗田田(2021) ,從科技接受模型探討微信支付之使用意圖,東吳大學企業管理學系碩士論文。范姜群暐(2012),行動商務大未來,財金資訊季刊 72,頁 2-6。
徐明珠(2021),知覺關鍵多數對於採用物聯網技術輔助學習意向之影響-以QR code 使用經驗為干擾變項,中華印刷科技年報,182-195。
徐東山(2017) ,影響消費者使用行動支付意願之研究-以智慧穿載裝置為例,國防大學管理學院資訊管理學系碩士班碩士論文。翁益基(2015) ,以科技接受和保護動機整合型模式及關係品質理論探討民眾對行動掛號 App 之使用行為模式,國立台中教育大學數位內容科技學系碩士論文。
高申春(2001) ,人性輝煌之路─班度拉的社會學習理論,台北市:貓頭鷹。
張志銘、許真真、趙宸紳、施國森(2020),運動健康信念結合科技接受模式探討運動手環與智慧手機 使用者的行為,運動與遊憩研究,14 卷 4 期,1-13。
張志銘、陳南琦、林忠政(2012),結合科技接受模式與計畫行為理論探討參與Wii 運動型遊戲之行為意圖,運動與遊憩研究,7 卷 1 期,53-67。
張春興(2000),心理學,台北市:東華出版社。
張春興(2000),張氏心理學辭典,台北市:東華出版社。
張書勳、錢玉芬與林于新(2009),以科技接受整合模式探討消費者使用購物網站之行為意圖,數位創世紀學術實務國際研討會發表論文。
張惠詠(2021) ,第三方支付滿意度影響因素研究,國立政治大學亞太研究英語碩士學位學程(IMAS) 碩士論文。張鈺祥(2021) ,探討文創市集使用中國大陸行動支付之意願,國立暨南國際大學觀光休閒與餐旅管理學系碩士論文。章德耘(2019) ,研究影響消費者意圖在使用行動支付之因素: QR code行動支付的案例研究,國立臺北大學國際企業研究所碩士論文。許文彥(2013),保險學:風險管理與保險(第四版),臺北:新陸書局。
許秋儀(2017) ,以科技接受模式探討消費者使用手機支付行為的影響因素,德明財金科技大學行銷管理系碩士在職專班碩士論文。許曉維(2020) ,消費者對零售商行動錢包使用意向之研究 -以PX PAY為例,國立臺灣科技大學資訊管理系碩士論文。郭柏志(2018) ,消費者保險費使用行動支付APP之行為意圖研究-以人壽保險為例,國立東華大學企業管理學系碩士論文。陳月香、黃莉雯(2019) ,以科技接受模式探討行動支付滿意度與接受度之研究,高苑科技大學資訊科技應用碩士論文。陳育亮、鄭淑慧(2010),網路教學與社群學習在成人教育的應用-以混成式網路學習探討其行為意向,資訊管理學報,17 卷 1 期,177-196。
陳宜伶(2010) ,電腦自我效能、主觀規範與信任對網路購物意願之影響-科技接受模式與理性行為觀點,國立成功大學企業管理學系碩博士班論文。陳玫娟(2019) ,知覺風險影響消費者使用行動支付意圖之研究,大葉大學國際企業管理學系碩士班碩士論文。陳思驊(2015) ,以「資訊系統成功模型」與「科技接受模式」發展「數位學習平台」使用渴望與意圖之解釋變數,大同大學事業經營學系碩士論文。陳師群、張嘉琳(2016) ,各國行動支付發展趨勢及相關個案研究,金融研究發展基金管理委員會,1-14。
陳逸軒(2019) ,行動支付使用意圖之研究,國立高雄大學亞太工商管理學系研究所碩士論文。陳碧珍 (1996) ,科技風險知覺之資訊整合實驗:以石化業為例,國立中山大學公共政策研究所碩士論文。曾介妤(2011) ,國民小學教師領導與教師教學自我效能關係之研究,逢甲大學公共政策研究所碩士論文。
黃天佑、崔倬豪、許雅惠(2013),以科技接受模式探討輔助行動載具在導覽系統上應用之研究,興國學報(14),163-180。
黃姿嘉(2021),行動支付持續使用意圖之研究— 以期望-確認理論、科技接受模式與創新擴散理論為基礎, 朝陽科技大學企業管理系碩士論文。黃柏達(2020) ,全聯消費者使用PXPAY意願之研究,崑山科技大學企業管理研究所。
黃英忠、黃毓華、劉錦雲、陳錦輝(2008) ,口筆譯訓練對電視新聞編譯人員自我效能之影響初探,臺灣師範大學翻譯研究所學位論文。
楊雅婷(2009) ,以理性行為理論和科技接受模型來探討消費者對創新科技智慧型手機的購買意願行為之研究,南華大學企業管理系管理科學碩士論文。溫珮如(2007) ,女性購買環保保養品意向之影響因素探討,國立中山大學公共事務管理研究所碩士論文。廖紫柔、張務華、羅居鎮(2020),網站知名度與網站忠誠度之相關分析-以科技接受模式為中介變數,管理資訊計算,9 卷 1 期,15-26。
劉錦添(1992) ,台灣地區民眾對環境風險的認知與面臨環境風險下的行為分析-台北及高雄地區,行政院環保署。
蔡詩郁(2018) ,第三方行動支付的信任感、安全性、便利性、知覺易用性與知覺有用性對於消費者之影響,中華大學科技管理學系碩士論文。蔣美惠(2003) ,探討保全人員生涯管理、人格特質及組織氣候對工作滿足、自我效能及工作績效之關聯性研究-以台北市保全公司為例,南華大學科學管理研究所碩士論文。鄭桂玫(2013),自行車 GPS 衛星導航系統科技準備接受模式實證之研究,運動與遊憩研究,7 卷 3 期,1-15。
鄭惠鎂(2014) ,消費者對第三方支付服務使用意圖之研究,國立彰化師範大學企業管理學系碩士論文。賴宜弘、黃芬芬、楊雪華(2015),科技接受模式中文版量表之編製與相關研究,亞東學報,35 期,201-221。
賴彥廷(2016),網路購物知覺價值、知覺風險、知覺易用與使用態度對使用意願影響之研究-以第三方支付服務為例,南華大學企業管理學系管理科學碩博士班碩士論文。駱俊賢、黃世浩(2017),以科技接受模式探討手機餐飲應用程式消費行為,運動休閒餐旅研究,12 卷 4 期,20-37。
龍美秀(2018),以科技接受模式探討地方稅網路申報系統之使用意向,中華大學工業管理學系碩士論文。顏乃欣(2006),由風險知覺角度探討放生行為(國科會專題研究計成果報告,NSC94-2621-Z-004-004),臺北市:國立政治大學心理學系。
魏文欽、賴佳伶(2011),影響美妝網站使用意圖關鍵因素之實證研究,Lisrel國際期刊,4 卷 2 期,70-95。
羅仕順、陳棟樑、林建志、陳俐文(2020),運用科技接受模式探討縣政府公文系統使用行為與使用滿意度之研究,管理資訊計算,9 期,112-126。
釋玲玲(2015) ,高雄市教育百寶箱雲端儲存系統接受度之研究,義守大學資訊管理學系碩士論文。二、英文部分
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39). Springer, Berlin, Heidelberg.
Ajzen, I. & Fishbein, M. (1975), Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, pp. 53-89, Addison-Wesley, Reading, MA.
Ajzen, I., & Fishbein, M.(1975).A Bayesian analysis of attribution processes.Psychological bulletin,82(2), p.261.
Amer, A. A. & Abdel Hafez, H. A. (2017), “Empirical investigation of M-Government adoption in Egypt,” Egyptian Computer Science, Vol. 41, No. 2, pp. 36-48.
Angelakis, E., Azhar, E. I., Bibi, F., Yasir, M., Al-Ghamdi, A. K., Ashshi, A. M., ... & Raoult, D. (2014). Paper money and coins as potential vectors of transmissible disease. Future microbiology, 9(2), 249-261.
Baabdullah, A., Nasseef, O., & Alalwan, A. (2016). Consumer adoption of mobile government in the Kingdom of Saudi Arabia: The role of usefulness, ease of use, perceived risk and innovativeness. In Conference on e-Business, e-Services and e-Society (pp. 267-279). Springer, Cham.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191-215.
Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ:Prentice-Hall.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122.
Bandura, A. (1986). Social Foundations of thought and action:A social cognitive theory. Englewood Cliffs. NJ:Prentice-Hall.
Bandura, A. (1997). Self-efficacy: The exercise of control. Macmillan.
Bandura, A. (1999). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52(1), 1-26.
Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88(1), 87
Bandura, A., Adams, N. E., & Beyer, J. (1977). Cognitive processes mediating behavioral change. Journal of personality and social psychology, 35(3), 125.
Bandura, A., Adams, N. E., Hardy, A. B. & Howells, G. N. (1980), Tests of the generality of self-efficacy theory, Cognitive Therapy and Research, Vol. 4, No. 1, pp. 39-66.
Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of management information systems, 19(1), 211-241.
Bordalo, P., Coffman, K. B., Gennaioli, N., & Shleifer, A. (2020). “Older people are less pessimistic about the health risks of COVID-19,” National Bureau of Economic Research, working paper No. 27494.
Chandra, S., Srivastava, S. C., & Theng, L. 2010. Evaluating the role of trust in consumer adoption of mobile payment systems an empirical analysis. Communications of the Association for Information Systems27 29 561 588.
Chen, L., Gillenson, M. L. & Sherrell, D. L. (2002), “Enticing online consumers: An extended technology acceptance perspective,” Information and Management, Vol. 39, No. 8, pp. 705-709.
Cheng, T. C. E., Lam, D, Y. C. & Yeung, A. C. L. (2006), “Adoption of internet banking:an empirical study in Hong Kong,” Decis Support Syst, Vol. 42, No. 3, pp.1558-1572.
Chutter, M. (2009). Overview of the technology acceptance model--Origins, developments and future directions. Indiana University, USA . Sprouts:Working Papers on Information Systems, 9(37). Retrieved from http//sprouts.aisnet.org/9-37.
Coase-Sandor Institute for Law and Economics Working Paper, 723. The University of Chicago Law School.
Compeau, D. E. B. O. R. A. H., Graville, J., Haggerty, N. I. C. O. L. E., & Kelley, H. E. L. E. N. (2006). Computer self-efficacy. Human-computer interaction and management information systems: foundations, 225-261.
Crespo, A., Bosque, I., & Sánchez, M. (2009), The influence of perceived risk on Inter-net shopping behavior: A multidimensional perspective. Journal of Risk Research,12(2), 259–277.
Dahlberg, T., Guo, J., & Ondrus, J. (2015), A critical review of mobile payment research. Electron, Commerce Res, Appl,14(5), 265-284.
Dahlberg, T., Mallat, N., Ondrus, J. & Zmijewska, A. (2008), Past, present and future of mobile payment research review. Electron. Commerce Res, 7(2), 165-181.
Davis, F. D. (1986), A technology acceptance model for empirically testing new end-user information systems: Theory and results, Ph. D. Dissertation, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA.
Davis, F. D., Bagozzi, R. P., &Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.
Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation; Psychology; Personality.
Eastin, M. (2002). “Diffusion of E-commerce: an Analysis of the Adoption of Four E-commerce Activities, “Telematics and Informatics, 19 (3), 251-267.
Em, S., Norng, S., & Thab, C. (2021) .The Analysis of Technology Acceptance Model on the Study of Consumer Attitudes toward the Intention to Adopt Mobile Banking App in Cambodia. Key Remarks from Managing Director of ACLEDA Institute of Business (AIB), 74.
Ervasti, M. & Helaakoski, H. (2010), “Case study of application-based mobile service acceptance and development in Finland,” International Journal of Information Technology and Management, Vol. 9, No. 3, pp. 243-259.
Evans, D., & Pirchio, A. (2015). An empirical examination of why mobile money schemes ignite in some developing countries but flounder in most.
Ferran, F. M. (2021). Extended Technology Acceptance Model to Examine the Use of Google Forms–based Lesson Playlist in Online Distance Learning. Recoletos Multidisciplinary Research Journal, 9(1), 147-161.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
Folorunso, O., Vincent, R. O., Adekoya, A. F., & Ogunde, A. O. (2010). Diffusion of innovation in social networking sites among university students. International Journal of Computer Science and Security, 4(3), 361-372.
Gefen, D. (2003), “TAM or just plain habit: A look at experienced online shoppers,”Journal of End User Computing, Vol. 15 No. 3, pp. 1-13.
Gefen, D., Karahanna, E. & Straub, D. W. (2003), “Trust and TAM in online shopping: An integrated model,” Management Information Systems Quarterly, Vol. 27, No. 1, pp. 51-90.
Gist, M. (1987). Self-efficacy: Implications for organizational behavior and human resource management. Academy of Management Review, 12: 472-485.
Gist, M. E., & Mitchell, T. R. (1992). Self-efficacy: A theoretical analysis of its determinants and malleability. Academy of Management Review, 17, pp.183-211.
Grandón, E. E., Díaz-Pinzón, B., Magal, S. R., & Rojas-Contreras, K. (2021). Technology Acceptance Model Validation in an Educational Context: A Longitudinal Study of ERP System Use. Journal of Information Systems Engineering and Management, 6(1), em0134.
Grandon, E., Alshare, O., & Kwan, O. (2005). Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46–56.
Gratt, L. B. (1987). Risk analysis or risk assessment; a proposal for consistent definitions. In Uncertainty in risk assessment, risk management, and decision making (pp. 241-249): Springer.
Ha, S., & Stoel, L., Consumer E-shopping acceptance: Antecedents in a tech-nology acceptance model. Journal of Business Research, 62(5), 565–571, 2009
Hammouri,Q.,&Abu-Shanab,E.(2018). Exploring Factors Affecting Users'Satisfaction Toward E-Learning Systems.International Journal of Information and Communication Technology Education (IJICTE), 14(1), 44-57. doi:10.4018/IJICTE.2018010104
Hillson, S. (2005). Teeth. Cambridge university press.
Hsu, C.L. & Lu, H.P. (2004), “Why do people play online games? An extended TAM with social influences and flow experience,” Information and Management, Vol. 41, No. 7, pp. 853-868.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506.
Igbaria, M., & Iivari, J. J. O. (1995). The effects of self-efficacy on computer usage.23(6), 587-605.
Isaac, O., Abdullah, Z., Ramayah, T., & Mutahar, A. M. (2017). Internet usage within government institutions in Yemen: An extended technology acceptance model (TAM) with internet self-efficacy and performance impact. Science International, 29(4), 737-747.
Izquierdo, Yusta, A., Olarte-Pascual, C., Reinares-Lara, E. (2015), Attitudes toward mobile advertising among users versus non-users of the mobile Internet. Telematics Inform. 32(2), 355-366.
Kanfer, R.(1987).Task-specific motivation:An integrative approach to issues if measurement, mechanisms, processes, and determinant. Journal of social and clinical psychology,5,237-264.
Kang, J. 2018. Mobile payment in Fintech environment trends, security challenges, and services. Human centric Computing and Information Sciences8 1 32.
Keith, M. J., Babb Jr, J. S., Furner, C. P., & Abdullat, A. (2011, January). The role of mobile self-efficacy in the adoption of location-based applications: An iPhone experiment. In 2011 44th Hawaii International Conference on System Sciences (pp. 1-10). IEEE.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors I nfluencing the intention to use mobile payment. Computers in Human Behavior26 3 310 322.
Kotler, P. (2003), Marketing Management (11th Ed.), Prentice-Hall Inc., New York, NY.
Lai, T. H., Tang, E. W., Chau, S. K., Fung, K. S., & Li, K. K. (2020). Stepping up infection control measures in ophthalmology during the novel coronavirus outbreak: an experience from Hong Kong. Graefe's Archive for Clinical and Experimental Ophthalmology, 1-7.
Legris, P., Ingham, J. & Collerette, P. (2003), “Why do people use information technology? A critical review of the technology acceptance model,”Information and Management,”Vol. 40, No. 3, pp. 191-204.
Lent, R. W., & Lopez, F. G. (2002). Cognitive ties that bind: A tripartite view of efficacy beliefs in growth-promoting relationships. Journal of Social and Clinical Psychology, 21(3), 256-286.
Liébana Cabanillas, F., Ramos de Luna, I., & Montoro Ríos, F. J. (2015). User behaviour in QR mobile payment system The QR payment acceptance model. Luarn, Analysis and Strategic Management 27 9 1031 1049.
Lim, N.(2003) Consumers’ perceived risk: sources versus consequences. Electronic commerce research and applications 2.3 : 216-228.
Lin, H. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252-260.
Lu, Y., Deng, Z. & Wang, B. (2010), “Exploring factors affecting Chinese consumers’ usage of short message service for personal communication,” Information Systems Journal, Vol. 20, No. 2, pp.183-208.
Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in human behavior, 21(6), 873-891.
Makki, A. M., Ozturk, A. B., & Singh, D. (2016). Role of risk, self-efficacy, and innovativeness on behavioral intentions for mobile payment systems in the restaurant industry. Journal of Foodservice Business Research, 19(5), 454-473.
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The Multilevel and Multifaceted Character of Computer Self-Efficacy: Toward Clarification of the Construct and an Integrative Framework for Research. Information Systems Research, 9, 126-163.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.
Mun Y. Yi ., Yujong Hwang(2003). “Predicting the use of web-based information systems:self-efficacy,enjoyment,learning goal orientation, and the technology acceptance model.” Int. J. Human-Computer Studies, 59: 431-449
Nagy, J. T. (2018). Evaluation of online video usage and learning satisfaction: An extension of the technology acceptance model. International Review of Research in Open and Distributed Learning, 19(1),159-185.
Ngai, E. W. T., Poon, J. K. L. & Chan, Y. H. C. (2007), “Empirical examination of the adoption of WebCT using TAM, ” Computers and Education, Vol. 48, No. 2, pp. 250-267.
Nilsen, H. (2009). Influence on Student Academic Behaviour through Motivation, Self-Efficacy and Value-Expectation: An Action Research Project to Improve Learning. Issues in Informing Science & Information Technology, 6.
O’Reilly, P., Duane, A., & Andreev, P. (2012). To M-Pay or not to M-Pay—Realising the potential of smart phones: conceptual modeling and empirical validation. Electronic Markets, 22(4), 229-241.
Ozkan, S., Bindusara, G. & Hackney, R. (2010), “Facilitating the adoption of e-payment systems: Theoretical constructs and empirical analysis,” Journal of Enterprise Information Management, Vol. 23, No. 3. pp. 305-325.
Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543-578.
Palvia, P., The role of trust in e-commerce relational exchange: A unifiedmodel. Information & Management, 46(4), 213–220, 2009
Paul, S. & Elke, U. W.(2002). Perception of Risk Posed by Extreme Events,Paper presented at the Risk Management strategies in an Uncertain World.
Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS quarterly, 30(1), 115-143.
Petschnig, M., Heidenreich, S., & Spieth, P. (2014). Innovative alternatives take action-Investigating determinants of alternative fuel vehicle adoption. Transportation Research Part A: Policy and Practice, 61, 68-83
Pintrich, P. R., & DeGroot, E. (1990). Quantitative and qualitative perspectives on student motivational beliefs and self-regulated learning. In Annual Meeting of the American Educational Research Association, Boston, MA (Vol. 128).
Pookulangara, S., & Koesler, K. (2011), Cultural influence on consumers' usage of social networks and its' impact on online purchase intentions. Journal of Retailing and Consumer Services, 18(4), 348-354.
Putzer, G. J. & Y. Park (2010), “The effects of innovation factors on smartphone adoption among nurses in community hospitals,” Perspectives in Health Information Management, 7, 1-15.
Ramayah,T.,&Aafaqi,B.(2004). Role of self-efficacy in e-library usage among students of a public university in Malaysia. Malaysian Journal of Library & Information Science, 9(1), 39-57.
Riseley, R. (2005). Perception of risk of depression: The influence of optimistic bias in a non-clinical population of women (Doctoral dissertation, Victoria University).
Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of human-computer studies, 64(8), 683-696.
Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1, The Journal of Psychology, 91(1), 93-114.
Schierz, P. G., Schilke, O., and Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services An empirical analysis. Electronic Commerce Research and Applications9 3 209 216.
Schlosser, A. E. (2003), “Experiencing products in the virtual world: The role of goal and imagery in influencing attitudes versus purchase intentions,” Journal of Consumer Research, Vol. 30, No. 2, pp. 184-198.
Scholz, U., Sniehotta, F., & Schwarzer, R. (2005). Predicting physical exercise in cardiac rehabilitation: The role of phase-specific self-efficacy beliefs. Journal of Sport & Exercise Psychology, 27, 135-142.
Shaw, N. (2014). The mediating influence of trust in the adoption of the mobile wallet. Journal of Retailing and Consumer Services, 21(4), 449–459.
Shrigley, R. L. (1990), “Attitude and behavior are correlates,” Journal of Research in Science Teaching, Vol. 27, No.2, pp. 97-113.
Slovic, P., Fischhoff, B., & Lichtenstein, S. (1982). Why study risk perception?. Risk analysis, 2(2), 83-93.
Surej P, J. (2015). The integration of information technology in higher education: a study of faculty’s attitude towards it adoption in teaching process. Contaduría y Administración, 60(1), 230-252.
Tarhini, A., Arachchilage, N.A.G. and Abbasi, M.S. (2015), “A critical review of theories and models of technology adoption and acceptance in information system research,” International Journal of Technology Diffusion, Vol. 6, No. 4, pp. 58-77.
Taylor, S. and Todd, P.A. (1995), “Understanding information technology usage: A test of competing models,” Information Systems Research, Vol. 6, No. 2, pp. 144-176.
Venkatesh, V. and Davis, D. (2000), "A theoretical extension of the technology acceptance model: four longitudinal field studies," Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh,V. and Davis,F.D., (1996). A Model of the Antecedents of Perceived Ease of Use:Development and Test, Decision Sciences, 27(3), 451-481.
Verkasalo, H., López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H.(2010). Analysis of users and non-users of smartphone applications. Telematics and Informatics,27(3),242-255.
Walters, C. G. (1978). Consumer behavior: theory and practice (3rd ed.).Homewood, Ill.: R. D. Irwin.
Wambaa, S. F., Bhattacharyab, M., Trincherac, L. & Ngai. E. W. T. (2017), “Role of intrinsic and extrinsic factors in user social media acceptancewithin workspace: Assessing unobserved heterogeneity” International Journal of Information Management, Vol. 37, No. 2, pp. 1-13.
Wang, S. T. (2019). The effects of risk appraisal and coping appraisal on the adoption intention of m-payment. International Journal of Bank Marketing.
Wang, X., Yuen, K., Wong, Y., & Teo, C. (2018). An innovation diffusion perspective of e-consumers’ initial adoption of self-collection service via automated parcel station. The International Journal of Logistics Management, 29(1), 237-260.
Wood, R., & Bandura, A. (1989). Impact of conceptions of ability on self-regulatory mechanisms and complex decision making. Journal of personality and social psychology, 56(3), 407.
Woon, I., Tan, G.-W., & Low, R. (2005). A protection motivation theory approach to home wireless security. ICIS 2005 proceedings, 31.
Yoo, K., Bae, K., Park, E., & Yang, T. (2019). Understanding the diffusion and adoption of Bitcoin transaction services: The integrated approach. Telematics and Informatics, 101302.
Zeng, Q., & Ma, J. (2016). Understanding the role of individual perception on mobile payment: Moderating or mediating. Journal of Advanced Management Science, 43,195-200.
三、網路資料
IGI Global 2019. What is Mobile Payment. From https://www.igiglobal.com/dictionary/review government initiatives tanzania/18913. 【 2020/03/20】
MIC.資策會產業情報研究所 (2021) ,【2020下半年行動支付大調查】六成消費者常用行動支付 比例首度超越電子票https://mic.iii.org.tw/news.aspx?id=593
Worldometer(2021) ,圖解看疫情1.各國疫情統計 - PRIDE政策研究指標資料庫https://pride.stpi.narl.org.tw/index/graph-world/detail/4b1141ad70bfda5f0170e64424db3fa3
金管會,2016,〈「行動支付發展簡介及金管會立場」〉,金管會,取自https//join.gov.tw/attachments/9aed4486 2b88 4aeb 9111 8845be6f508c。【 2020/03/20】
金管會,2016金管會公布「金融科技發展策略白皮書」https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201605120002&aplistdn=ou=news,ou=multisite,ou=chinese,ou=ap_root,o=fsc,c=tw&dtable=News
金管會,2016提出「金融科技發展推動計畫」,取自https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201609200003&aplistdn=ou=news,ou=multisite,ou=chinese,ou=ap_root,o=fsc,c=tw&dtable=News。【 2020/03/20】
胡自立 (2020a) ,行動支付 2500 大調查-2020 上半年,資策會產業情報研究所(MIC) ,取自 https://mic-iii-org-tw.ezproxy.nptu.edu.tw/AISP/ReportS.aspx?id=PPT1090616-2
胡自立(2015) ,資策會MIC調查:臺灣行動支付採用率不到5% | iThome https://www.ithome.com.tw/article/94369
記疫(2020) ,民眾對新冠肺炎的風險認知,劉錦添、劉錦龍:2020 年 11 月 3 日,取自:https://covid19.nctu.edu.tw/article/4492
報導者(2021) ,病毒的逆襲 斷鏈防線下的社區焦土戰 - 報導者https://www.twreporter.org/topics/covid-19-taiwan-community-spread-war
雷立偉(2020) ,快趁現在普及行動支付,聯合報。
維基百科 (2020) ,行動支付,取自https://zh.wikipedia.org/wiki/%E8%A1%8C%E5%8B%95%E6%94%AF%E4%BB%98
維基百科(2021) ,嚴重特殊傳染性肺炎疫情https://zh.wikipedia.org/zhtw/2019%E5%86%A0%E7%8B%80%E7%97%85%E6%AF%92%E7%97%85%E8%87%BA%E7%81%A3%E7%96%AB%E6%83%85#%E7%B5%B1%E8%A8%88%E6%95%B8%E6%93%9A
聯合新聞網(2021) ,追台灣疫情變化看即時數據圖表https://topic.udn.com/event/COVID19_Taiwan