|
[1] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P., 1998, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324. [2] Alex Krizhevsky , Ilya Sutskever and Geoffrey E. Hinton, 2012. "ImageNet Classification with Deep Convolutional Neural Networks", In Advances in Neural Information Processing Systems 25, pp. 1106–1114. [3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 2009, "ImageNet: A Large-Scale Hierarchical Image Database", In CVPR09. [4] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R, 2014 , "Dropout: A simple way to prevent neural networks from overfitting", The Journal of Machine Learning Research, 15(1), 1929-1958. [5] M. Lin, Q. Chen and S. Yan, 2013, "Network in network", CoRR, vol. abs/1312.4400. [6] K. Simonyan and A. Zisserman, 2014, "Very deep convolutional networks for large-scale image recognition", CoRR, vol. abs/1409.1556. [7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, 2014, "Going Deeper with Convolutions", CoRR, vol. abs/1409.4842. [8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2015, "Deep Residual Learning for Image Recognition", CoRR, vol. abs/1512.03385. [9] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer, 2016, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", CoRR, vol. abs/1602.07360. [10] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, 2017, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", CoRR, vol. abs/1704.04861. [11] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, 2017, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices", CoRR, vol. abs/1707.01083. [12] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le, 2017, "Learning Transferable Architectures for Scalable Image Recognition", CoRR, vol. abs/1707.07012. [13] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, Quoc V. Le, 2018, "MnasNet: Platform-Aware Neural Architecture Search for Mobile", CoRR, vol. abs/1807.11626 [14] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna, 2015, "Rethinking the Inception Architecture for Computer Vision", CoRR, vol. abs/1512.00567. [15] A. G. Santos, C. O. de Souza, C. Zanchettin, D. Macedo, A. L. I. Oliveira, T. Ludermir, 2018, "Reducing SqueezeNet storage size with depthwise separable convolutions", in Proc. Int. Joint Conf. Neural Netw. (IJCNN), pp. 1–6. [16] Sergey Ioffe, Christian Szegedy, 2015, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", CoRR, vol. abs/1502.03167. [17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi, 2016, "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning", CoRR, vol. abs/1602.07261. [18] https://chih-sheng-huang821.medium.com/卷積神經網路-convolutional-neural-network-cnn-1-1卷積計算在做什麼-7d7ebfe34b8 [19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen, 2018, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CoRR, vol. abs/1801.04381. [20] https://www.kaggle.com/datasets/utkarshsaxenadn/fast-food-classification-dataset [21] https://www.kaggle.com/datasets/alxmamaev/flowers-recognition [22] https://www.kaggle.com/datasets/alessiocorrado99/animals10
|