|
1.田欣利、王龍、郭昉、王望龍、雷蕾(2016)。《小砂輪軸向大切深緩進給磨削的磨損特徵》https://kknews.cc/zh-tw/news/leyar9.html 2.林豐澤(2005)。演化式計算上篇:演化式演算法的三種理論模式。智慧科技與應用統計學報,3(1),1。 3.黃漢邦(1991)。如何做到智慧型控制?──神經網路在控制上的應用。科學月刊,第二十二卷,第259期,第495-503頁。 4.廖家宜(2022)。高鋼價時代 手工具、扣件業等下游業者如何延續外銷佳績?https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=&id=627821 5.Al-Hazza, M. H. F., bt Ibrahim, N. A., Adesta, E. T., Khan, A. A., & Sidek, A. B. A. (2017, March). Surface roughness optimization using Taguchi Method of high speed end milling for hardened steel D2. In IOP Conference Series: Materials Science and Engineering (Vol. 184, No. 1, p. 012047). IOP Publishing. 6.Asiltürk, I., & Çunkaş, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert systems with applications, 38(5), 5826-5832. 7.Bisgaard, S. (1990). Quality engineering and Taguchi methods: a perspective. 8.Brezocnik, M., & Kovacic, M. (2003). Integrated genetic programming and genetic algorithm approach to predict surface roughness. Materials and manufacturing processes, 18(3), 475-491 9.Chen, J. C., Li, Y., & Cox, R. A. (2009). Taguchi-based Six Sigma approach to optimize plasma cutting process: an industrial case study. The International Journal of Advanced Manufacturing Technology, 41(7-8), 760-769. 10.Di Benedetto, R. M., Botelho, E. C., Janotti, A., Junior, A. A., & Gomes, G. F. (2021). Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites. Composite Structures, 257, 113131. 11.Heyn, J., Gümbel, P., Bobka, P., Dietrich, F., & Dröder, K. (2019). Application of artificial neural networks in force-controlled automated assembly of complex shaped deformable components. Procedia CIRP, 79, 131-136. 12.Ikumapayi, O. M., & Akinlabi, E. T. (2019). Experimental data on surface roughness and force feedback analysis in friction stir processed AA7075–T651 aluminium metal composites. Data in brief, 23, 103710. 13.International journal of machine tools and manufacture, 45(4-5), 467-479. 14.Kadam, B. J., & Mahajan, K. A. (2021). Optimization of cutting temperature in machining of titanium alloy using Response Surface Method, Genetic Algorithm and Taguchi method. Materials Today: Proceedings. 15.Kaladgi, A. R., Afzal, A., Manokar, A. M., Thakur, D., Agbulut, U., Alshahrani, S., & Subbiah, R. (2021). Integrated Taguchi-GRA-RSM optimization and ANN modelling of thermal performance of zinc oxide nanofluids in an automobile radiator. Case Studies in Thermal Engineering, 26, 101068. 16.Khare, S. K., Agarwal, S., & Srivastava, S. (2018). Analysis of surface roughness during turning operation by Taguchi method. Materials Today: Proceedings, 5(14), 28089-28097. 17.Ko, D. C., Kim, D. H., & Kim, B. M. (1999). Application of artificial neural network and Taguchi method to preform design in metal forming considering workability. International Journal of Machine Tools and Manufacture, 39(5), 771-785. 18.Kumar, B. R., Vardhan, H., Govindaraj, M., & Vijay, G. S. (2013). Regression analysis and ANN models to predict rock properties from sound levels produced during drilling. International Journal of Rock Mechanics and Mining Sciences, 58, 61-72. 19.Kumar, S. R., & Kulkarni, S. K. (2017). Analysis of hard machining of titanium alloy by Taguchi method. Materials Today: Proceedings, 4(10), 10729-10738. 20.Li, M. H. C., Al-Refaie, A., & Yang, C. Y. (2008). DMAIC approach to improve the capability of SMT solder printing process. IEEE Transactions on Electronics Packaging Manufacturing, 31(2), 126-133. 21.Li, Y., Li, Y. F., Wang, Q. L., Xu, D., & Tan, M. (2009). Measurement and defect detection of the weld bead based on online vision inspection. IEEE Transactions on Instrumentation and Measurement, 59(7), 1841-1849. 22.Mohan, N. S., Kulkarni, S. M., & Ramachandra, A. (2007). Delamination analysis in drilling process of glass fiber reinforced plastic (GFRP) composite materials. Journal of Materials Processing Technology, 186(1-3), 265-271. 23.Nisar, L., Banday, B., Amatullah, M., Farooq, M., Thoker, A. N., Maqbool, A., & Wahid, M. A. (2021). An investigation on effect of process parameters on surface roughness and dimensional inaccuracy using Grey based Taguchi method. Materials Today: Proceedings. 24.Oktem, H., Erzurumlu, T., & Erzincanli, F. (2006). Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & design, 27(9), 735-744. 25.Özel, T., & Karpat, Y. (2005). Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. 26.Ridwan, F., & Xu, X. (2013). Advanced CNC system with in-process feed-rate optimisation. Robotics and Computer-Integrated Manufacturing, 29(3), 12-20. 27.Taguchi, G. (1995). Quality engineering (Taguchi methods) for the development of electronic circuit technology. IEEE Transactions on Reliability, 44(2), 225-229. 28.Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE signal processing magazine, 26(1), 98-117. 29.Yang, W. H. P., & Tarng, Y. S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of materials processing technology, 84(1-3), 122-129. 30.Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of materials processing technology, 184(1-3), 233-239.
|