[1]財政部統計處, 97-107 年咖啡豆進口量成長 2.1 倍,今年進口量規模可望接續 107 年再創新高. 財政統計通報第22號, 2019.
[2]Organization, I.C., World coffee consumption. 2021.
[3]Vincent, J., Green coffee processing, in Coffee: Volume 2: Technology. 1987, Springer. p. 1-33.
[4]Ghosh, P. and N.J.I.J.E.R.T. Venkatachalapathy, Processing and drying of coffee–a review. 2014. 3(12): p. 784-794.
[5]Haile, M., W.H.J.C.-P. Kang, and Research, The harvest and post-harvest management practices’ impact on coffee quality. 2019: p. 1-18.
[6]PUERTA, G.I., Influencia del proceso de beneficio en la calidad del café. 1999.
[7]Lee, D.-J. and R.S. Anbalagan. High-speed automated color-sorting vision system. in Optical Engineering Midwest'95. 1995. SPIE.
[8]Boyd Jr, A., Potential applications of electric color sorting techniques in seed technology. 2021.
[9]Pearson, T., et al., Color image based sorter for separating red and white wheat. 2008. 2: p. 280-288.
[10]He, L., Z. Niu, and D. Chen. Research on development of color sorter using triz. in Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management: Proceedings of PROLAMAT 2006, IFIP TC5 International Conference, June 15–17, 2006, Shanghai, China. 2006. Springer.
[11]Kosalos, J., et al., Arabica Green Coffee: Defect Handbook. 2013: Specialty Coffee Association of America.
[12]林晋億, 全彩機械視覺於咖啡生豆檢測之研究, in 電子與光電工程研究所碩士班. 2013, 國立雲林科技大學: 雲林縣. p. 66.[13]凃亞廷, 咖啡公豆母豆自動選別裝置之開發, in 生物產業機電工程學系所. 2014, 國立中興大學: 台中市. p. 113.
[14]Mebatsion, H., et al., Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. 2013. 90: p. 99-105.
[15]鄭志祥, 影像次像素應用在米粒檢測之研究, in 農業機械工程學系. 2002, 國立中興大學: 台中市. p. 92.
[16]葉翊暉, 發展基於深度學習之咖啡生豆顏色分類系統, in 機械工程研究所. 2021, 中原大學: 桃園縣. p. 47.
[17]Unal, Y., et al., Application of pre-trained deep convolutional neural networks for coffee beans species detection. 2022. 15(12): p. 3232-3243.
[18]Podpora, M., G.P. Korbas, and A. Kawala-Janik. YUV vs RGB-Choosing a Color Space for Human-Machine Interaction. in FedCSIS (Position Papers). 2014. Citeseer.
[19]Bovik, A.C., The essential guide to image processing. 2009: Academic Press.
[20]Haralick, R.M., et al., Image analysis using mathematical morphology. 1987(4): p. 532-550.
[21]Duda, R.O. and P.E.J.C.o.t.A. Hart, Use of the Hough transformation to detect lines and curves in pictures. 1972. 15(1): p. 11-15.
[22]Canny, J.J.I.T.o.p.a. and m. intelligence, A computational approach to edge detection. 1986(6): p. 679-698.
[23]Vincent, O.R. and O. Folorunso. A descriptive algorithm for sobel image edge detection. in Proceedings of informing science & IT education conference (InSITE). 2009.
[24]Suzuki, S.J.C.v., graphics, and i. processing, Topological structural analysis of digitized binary images by border following. 1985. 30(1): p. 32-46.
[25]Jain, A.K., J. Mao, and K.M.J.C. Mohiuddin, Artificial neural networks: A tutorial. 1996. 29(3): p. 31-44.
[26]Hecht-Nielsen, R., Theory of the backpropagation neural network, in Neural networks for perception. 1992, Elsevier. p. 65-93.
[27]Sharma, S., S. Sharma, and A.J.T.D.S. Athaiya, Activation functions in neural networks. 2017. 6(12): p. 310-316.
[28]Sanger, T.D.J.N.n., Optimal unsupervised learning in a single-layer linear feedforward neural network. 1989. 2(6): p. 459-473.
[29]Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network. in 2017 international conference on engineering and technology (ICET). 2017. Ieee.
[30]Hubel, D.H. and T.N.J.T.J.o.p. Wiesel, Receptive fields and functional architecture of monkey striate cortex. 1968. 195(1): p. 215-243.
[31]Fukushima, K.J.B.c., Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. 1980. 36(4): p. 193-202.
[32]LeCun, Y., et al., Gradient-based learning applied to document recognition. 1998. 86(11): p. 2278-2324.
[33]Lin, M., Q. Chen, and S.J.a.p.a. Yan, Network in network. 2013.
[34]Chollet, F. Xception: Deep learning with depthwise separable convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[35]Huang, G., et al. Densely connected convolutional networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[36]Tan, M. and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. in International conference on machine learning. 2019. PMLR.
[37]Szegedy, C., et al. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[38]Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[39]He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[40]Luque, A., et al., The impact of class imbalance in classification performance metrics based on the binary confusion matrix. 2019. 91: p. 216-231.
[41]Fawcett, T.J.P.r.l., An introduction to ROC analysis. 2006. 27(8): p. 861-874.
[42]Bradley, A.P.J.P.r., The use of the area under the ROC curve in the evaluation of machine learning algorithms. 1997. 30(7): p. 1145-1159.