|
[1] International Roadmap For Devices and System 2020 EDITION, IEEE. (2020). [2] Samsung Begins Chip Production Using 3nm Process Technology With GAA Architecture,(2022). [3] Ali W. Elshaari, Stefan F. Preble, 10 Gb/s broadband silicon electro-optic absorption modulator, Opt. Commun, 283 (2010) 2829–2834. [4] W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, Influence of the electron mean free path on the resistivity of thin metal films, Microelectron Eng, 76 (2004) 146–152. [5] L. Chen, Q. Chen, D. Ando, Y. Sutou, M. Kubo, J. Koike, Potential of low-resistivity Cu2Mg for highly scaled interconnects and its challenges, Appl. Surf. Sci., 537 (2021) 148035. [6] International Roadmap for Devices and System, (2018) 5-17. [7] K. Barmak, X. Liu, A. Darbal, N. T. Nuher, D. Choi, T. Sun, A. P. Warren, K. R. Coffey, M. F. Toney, On twin density and resistivity of nanometric Cu thin films, J. Appl. Phys., 120 (2016) 065106. [8] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, M. Murakami, Diffusion barrier property of TaN between Si and Cu, Appl. Surf. Sci., 99 (1996) 265-272. [9] M. Lane, R. H. Dauskardt, Adhesion and reliability of copper interconnects with Ta and TaN barrier layers, J. Mater.Res., 15.1 (2000) 203-211. [10] K. L. Ou, W. F. Wu, C. P. Chou, S. Y. Chiou, C. C. Wu, Improved TaN barrier layer against Cu diffusion by formation of an amorphous layer using plasma treatment, J. Vac. Sci. Technol. B, 20.5 (2002) 2154-2161. [11] K. Jeong, J. Lee, I. Byun, M. jun. Seong, J. Park, H. W. Kim, M. J. Kim, J. H. Kim, Jaegab Lee, Synthesis of highly conductive cobalt thin films by LCVD at atmospheric pressure, Mater Sci Semicond Process, 68 (2017) 245–251. [12] O. Varela Pedreira, K. Croes, A. Lesniewska, C. Wu, M. H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V. Vega Gonzalez, J. Bömmels, Zs. Tokei, Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, 2017 IEEE IRPS, (2017) 6B-2.1-6B-2.8. [13] E. Milosevic, S. Kerdsongpanya, D. Gall, The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers, 2018 IEEE Nanotechnology Symp. (ANTS), (2018) pp. 1-5. [14] J.-W. Lim, M. Isshiki, Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect, J. Appl. Phys., 99 (2006) 094909. [15] J.M. Purswani, D. Gall, Electron scattering at single crystal Cu surfaces, Thin Solid Films, 516 (2007) 465–469. [16] E. Yoo, J. H. Moon, Y. S. Jeon, Y. Kim, J. P. Ahn, Y. K. Kim, Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires, Mater Charact, 166 (2020) 110451. [17] K. Venkatraman, Y. Dordi, R. Akolkar, Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164 (2) (2017) D104-D109. [18] S. Dutta, S. Beyne, A. Gupta, S. Kundu, S.V. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, C.J. Wilson, Z.T. okei, Christoph Adelmann, Sub-100 nm2 Cobalt Interconnects, IEEE. Electron Device Lett. 39(5) (2018) 731-734. [19] R. Saeki, T. Ohgai, Determination of cathode current efficiency forelectrodeposition of ferromagnetic cobalt nanowire arrays innanochannels with extremely large aspect ratio, Results Phys., 15 (2019) 102658. [20] G. Shu, C. Hu, T. Teng, X. P. Qu, Linewidth related resistivities and growth behavior of nickel silicide nanowires by solid state reaction between Ni and electron-beam lithography prepared Si nanowires, Thin Solid Films, 724 (2021) 138612. [21] M. Zhou, Y. Zhao, W. Huang, B. M. Wang, G. P. Ru, Y. L. Jiang, R. Liu, X. P. Qu, Cu contact on NiSi substrate with a Ta/TaN barrier stack, Microelectron Eng, 85 (2008) 2028–2031. [22] S. Biswas, P. Decorse, H. Kim, P. Lang, Organic planar diode with Cu electrode via modification of the metal surface by SAM of fluorobiphenyl based thiol, Appl. Surf. Sci., 558 (2021) 149794. [23] Z. Jia, V. W. Lee, I. Kymissis, In situ study of pentacene interaction with archetypal hybrid contacts: Fluorinated versus alkane thiols on gold, Phys. Rev. B, 82 (2010) 125457. [24] B. Li, T. D. Sullivan, T. C. Lee, D. Badami, Reliability challenges for copper interconnects, Microelectron Reliab, 44 (2004) 365–380. [25] F. Messner, Material substitution and path dependence: empirical evidence on the substitution of copper for aluminum, Ecol Econ, 42 (2002) 259–271. [26] C. J. Liu, J. S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films, Mater. Res. Soc., 20 (2005) 96-503. [27] A. S. Kale, W. Nemeth, C. L. Perkins, D. Young, A. Marshall, K. Florent, S. K. Kurinec, P. Stradins, S. Agarwal, Thermal Stability of Copper–Nickel and Copper–Nickel Silicide Contacts for Crystalline Silicon, ACS Appl. Energy Mater., 1, 6, (2018) 2841–2848. [28] A. E. Kaloyeros, E. Eisenbraun, Ultrathin diffusion barriers/liners for gagascale copper metallization, Annu. Rev. Mater. Sci.; Palo Alto, 30 (2000) 363. [29] M. H. Tsai, J. W. Yeh, J. Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 516 (2008) 5527 – 5530. [30] K. E. Elers, V. Saanila, P. J. Soininen, W.-M. Li, J. T. Kostamo, S. Haukka, J. Juhanoja, W. F. A. Besling, Diffusion Barrier Deposition on a Copper Surface by Atomic Layer Deposition, Chem. Vap. Deposition, 8, 4 (2002) 149-153. [31] M.A. Nicolet, Diffusion barriers in thin films, Thin Solid Films 52(3) (1978) 415-443. [32] M. Stavrev, D. Fischer, Behavior of thin Ta-based films in the Cu/barrier/Si system, J. Vac. Sci. Technol. A, 17 (1999) 993. [33] F. Cao, G. h. Wu, L. t. Jiang, Evaluation of Cu(V) self-forming barrier for Cu metallization, J. Alloys Compd., 657 (2016) 483-486. [34] J. Borja, Joel. L. Plawsky, W. N. Gill, H. Bakhru, M. He, T. M. Lu, Penetration of Copper-Manganese Self-Forming Barrier into SiO2 Pore-Sealed SiCOH during Deposition, ECS J Solid State Sci Technol, 2 (2013) 9. [35] M. Franz, R. Ecke, C. Kaufmann, J. Kriz, S. E. Schulz, Characterisation of the barrier formation process of self-forming barriers with CuMn, CuTi and CuZr alloys, Microelectron Eng, 156 (2016) 65-69 [36] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement andMarket Trend Demands, Coatings, 8.11 (2018) 402. [37] R. J. Martín-Palmaa, A. Lakhtakia, Vapor-Deposition Techniques, Engineered Biomimicry. Elsevier Inc., 2013. 383-398. [38] H. Sano, R. Ishida, T. Kura, S. Fujita, S. Naka, H. Okada, T. Takai, Transparent organic light-emitting diodes with top electrode using ion-plating method, IEICE Trans. Electron., 98.11 (2015) 1035-1038. [39] R. Hippler, M. Cada, P. Ksirova, J. Olejnicek, P. Jiricek, J. Houdkova, H. Wulff, A. Kruth, C.A. Helm, Z. Hubicka, Deposition of cobalt oxide films by reactive pulsed magnetron sputtering, Surf. Coat. Technol., 405 (2021) 126590. [40] B. Li, Y. Zhang, Z. Wu, Z. Qin, H. Ji, X. Liu, B. Li, W. Hu, Magnetic properties and corrosion resistance of Co-DLC nanocomposite films with different cobalt contents, Diam Relat Mater, 117 (2021) 108477. [41] Z. h. Zheng, P. Fan, G. x. Liang, D. p. Zhang, Influence of deposition temperature on the microstructure and thermoelectric properties of antimonide cobalt thin films prepared by ion beam sputtering deposition, J. Alloys Compd., 619 (2015) 676–680. [42] X. Li, R. Deng, Q. Zhang, Cobalt-phosphorous coatings with tunable composition fabricated by additive-controlled electrodeposition from choline chloride-ethylene glycol deep eutectic solvent for anti-corrosion application, Surf. Coat. Technol., 443 (2022) 128610. [43] S. De, W.D. Sides, T. Brusuelas, Q. Huang, Electrodeposition of superconducting rhenium-cobalt alloys from water-insalt electrolytes, J. Electroanal. Chem., 860 (2020) 113889. [44] A. Meng, H. Zhang, B. Huangfu, W. Tian, L. Sheng, Z. Li, S. Tan, Q. Li, Bimetal nickel–cobalt phosphide directly grown on commercial graphite substrate by the one-step electrodeposition as efficient electrocatalytic electrode, Prog. Nat. Sci., 30 (2020) 461–468. [45] C. Liu, F. Su, J. Liang, Producing cobalt–graphene composite coating by pulseelectrodeposition with excellent wear and corrosion resistance, Appl. Surf. Sci., 351 (2015) 889–896. [46] H. C. Chuang, G. W. Jiang, J. Sanchez, Study on the changes of ultrasonic parameters over supercritical Ni-Co electroplating process, Ultrason Sonochem, 60 (2020) 104805. [47] K. C. Wu, J. Y. Tseng, W. J. Chen, Electroplated Ru and RuCo films as a copper diffusion barrier, Appl. Surf. Sci., 516 (2020) 146139. [48] Gouws, Shawn, Voltammetric characterization methods for the PEM evaluation of catalysts, Electrolysis. IntechOpen, 2012. [49] Sekar, Narendran, R. P. Ramasamy, Electrochemical impedance spectroscopy for microbial fuel cell characterization, J Microb Biochem Technol S, 6.2 (2013) 1-14. [50] B. Y. Chang, S. M. Park, Electrochemical Impedance Spectroscopy, Annu Rev Anal Chem, 3.1 (2010) 207. [51] F. Ciucci, Modeling electrochemical impedance spectroscopy, Curr Opin Electrochem, 13 (2019) 132-139. [52] Y. Deo, R. Ghosh, A. Nag, D. V. Kumar, R. Mondal, A. Banerjee, Direct and pulsed current electrodeposition of Zn-Mn coatings from additive-free chloride electrolytes for improved corrosion resistance, Electrochim. Acta, 399 (2021) 139379. [53] M. Bučko, J. Rogan, S.I. Stevanović, S. Stanković, J.B. Bajat, The influence of anion type in electrolyte on the properties of electrodeposited Zn Mn alloy coatings, Surf. Coat. Technol., 228 (2013) 221–228. [54] T. Jiang, M. J. C. Brym, G. Dubé, A. Lasia, G. M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids, Surf. Coat. Technol., 201 (2006) 1 – 9. [55] M. Bučko, J. Rogan, B. Jokić, M. Mitrić, U. Lačnjevac J. B. Bajat, Electrodeposition of Zn–Mn alloys at high current densities from chloride electrolyte, J Solid State Electrochem, 17 (2013) 1409–1419. [56] E. Rudnik, The influence of sulfate ions on the electrodeposition of Ni–Sn alloys from acidic chloride–gluconate baths, J. Electroanal. Chem., 726 (2014) 97–106. [57] G. A. Hope, R. Woods, Transient Adsorption of Sulfate Ions during Copper Electrodeposition, J. Electrochem. Soc., 151.9 (2004) C550. [58] Y. B. Amor, L. Bousselmi, M. C. Bernard, B. Tribollet, Nucleation-growth process of calcium carbonate electrodeposition in artificial water—Influence of the sulfate ions, J. Cryst. Growth, 320.1 (2011) 69-77. [59] J.S. Santos, R. Matos, F. Trivinho-Strixino, E.C. Pereira, Effect of temperature on Co electrodeposition in the presence of boric acid, Electrochim. Acta, 53 (2007) 644–649. [60] S. Vivegnis, M. Krid, J. Delhalle, Z. Mekhalif, F.U. Renner, Use of pyrophosphate and boric acid additives in the copper-zinc alloy electrodeposition and chemical dealloying, J. Electroanal. Chem., 848 (2019) 113310. [61] Lee, J. Min, K. K. Jung, J. S. Ko, Formation of nickel microcones by using an electrodeposition solution containing H3BO3, Curr Appl Phys, 16.3 (2016) 261-266. [62] S. Varvara, L. Muresan, A. Nicoara, G. Maurin, I. C. Popescu, Kinetic and morphological investigation of copper electrodeposition from sulfate electrolytes in the presence of an additive based on ethoxyacetic alcohol and triethyl-benzyl-ammonium chloride, Mater. Chem. Phys., 72 (2001) 332–336. [63] X. Wang, K. Wang, J. Xu, J. Li, J. Lv, M. Zhao, L. Wang, Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition, Dyes Pigm., 181 (2020) 108594. [64] K. R. Hebert, Analysis of Current-Potential Hysteresis during Electrodeposition of Copper with Additives, J. Electrochem. Soc., 148.11 (2001) C726. [65] M. Hasegawa, Y. Negishi, T. Nakanishi, Tetsuya Osaka, Effects of additives on copper electrodeposition in submicrometer trenches, J. Electrochem. Soc., 152.4 (2005) C221. [66] Pasquale, M. A., L. M. Gassa, A. J. Arvia, Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives, Electrochim. Acta, 53.20 (2008) 5891-5904. [67] Watanabe, Atsuya, Y. Takigawa, Reducing sulfur to improve thermal embrittlement in electrodeposited nickel using citric acid, Results in Surf. Interfaces, 1 (2020) 100001. [68] Matsui, Isao, Y. Takigawa, K. Higashi, High tensile ductility in electrodeposited bulk nanocrystalline Ni–W alloys, Adv Mat Res., 922. (2014) 497-502. [69] C. Qiang, J. Xu, S. Xiao, Y. Jiao, Z. Zhang, Y. Liu, L. Tian, Z. Zhou, The influence of pH and bath composition on the properties of Fe–Co alloy film electrodeposition, Appl. Surf. Sci., 257.5 (2010) 1371-1376. [70] J. A. Koza, M. Uhlemann, A. Gebert, L. Schultz, The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys, J. Electroanal. Chem., 617.2 (2008) 194-202. [71] Altiokka, Barış, A. K. Yildirim, Electrodeposition of CdS thin films at various pH values, J Korean Phys Soc, 72.6 (2018) 687-691. [72] B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [73] A. Bewick, M. Fleischmann, H. R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, Trans Faraday Soc, 58 (1962) 2200-2216. [74] Z. Kang, Q. Liu, Y. Liu, Preparation and micro-tribological property of hydrophilic self-assembled monolayer on single crystal silicon surface, Wear, 303 (2013) 297–301. [75] B. Subramanian, G. Theriault, J. Robichaud, N. Tchoukanova, Y. Djaoued, Large-area crack-free Au–SiO2 2D inverse opal composite films: Fabrication and SERS applications, Mater. Chem. Phys., 244 (2020) 122630. [76] O. Penon, D. Siapkas, S. Novo, S. Durán, G. Oncins, A. Errachid, L. Barrios, Carme, Nogués, M. Duch, J. A. Plaza, L. P. García, Optimized immobilization of lectins using self-assembled monolayers on polysilicon encoded materials for cell tagging, Colloids Surf. B, 116 (2014) 104–113. [77] M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, A. Kahoul, Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium, Mater. Chem. Phys., 122 (2010) 449–453. [78] Fang, Yiyun, Coaxial ultrathin Co1 − y Fey Ox nanosheet coating on carbon nanotubes for water oxidation with excellent activity, RSC Adv., 6.84 (2016) 80613-80620. [79] W. Nabgan, T. A. T. Abdullah, R. Mat, B. Nabgan, A. A. Jalil, L. Firmansyah, Sugeng Triwahyono, Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst, Int. J. Hydrog. Energy, 42 (2017) 8975 – 8985. [80] J.C. Ingersoll, N. Mani, J.C. Thenmozhiyal, A. Muthaiah, Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst, J. Power Sources, 173 (2007) 450–457. [81] Y. K. Ko, D. S. Park, B. S. Seo, H. J. Yang, H. J. Shin, J. Y. Kim, J. H. Lee, W. H. Lee, P. J. Reucroft, J. G. Lee, Studies of cobalt thin films deposited by sputtering and MOCVD, Mater. Chem. Phys., 80 (2003) 560-564. [82] E. Yoo, J. H. Moon, Y. S. Jeon, Y. Kim, J. P. Ahn, Y. K. Kim, Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires, Mater Charact, 166 (2020) 110451. [83] P. Guo, Y. X. Wu, W. M. Lau, H. Liu, L. M. Liu, Porous CoP nanosheet arrays grown on nickel foam as an excellent and stable catalyst for hydrogen evolution reaction, Int. J. Hydrog. Energy, 42 (2017) 26995 – 27003. [84] X. Gao, K. Lu, J. Chen, J. Min, D. Zhu, M. Tan, NiCoPeCoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction, Int. J. Hydrog. Energy, 46 (2021) 23205 – 23213. [85] Z. Guo, L. Liu, J. Wang, Y. Cao, J. Tu, X. Zhang, L. Ding, Recent progress in CoP-based materials for electrochemical water splitting, Int. J. Hydrog. Energy, 46 (2021) 34194 – 34215. [86] S. K. Donthu, S. Tripathy, D. Z. Chi, S. J. Chua, Raman scattering probe of anharmonic effects in NiSi, J. Raman Spectrosc, 35 (2004) 536–540. [87] D.M. Herrera-Zamora, F.I. Lizama-Tzec, I. Santos-González, R.A. Rodríguez-Carvajal, O. García-Valladares, O. Arés-Muzio, G. Oskam, Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability, Sol Energy, 207 (2020) 1132–1145. [88] Y. Brik, M. Kacimi, M. Ziyad, F. Bozon-Verduraz, Titania-Supported Cobalt and Cobalt–Phosphorus Catalysts: Characterization and Performances in Ethane Oxidative Dehydrogenation, J Catal, 202 (2001) 118–128. [89] D. Torres, L. Madriz, R. Vargas, . R. Scharifker, Electrochemical formation of copper phosphide from aqueous solutions of Cu(II) and hypophosphite ions, Electrochim. Acta, 354 (2020) 136705. [90] J. S. Fang, Y. L. Wu, Y. L. Cheng, G. S. Chen, Synthesis of Dilute Phosphorous-Embedded Co Alloy Films on a NiSi Substrate with a Superior Gap-Filling Capability for Nanoscale Interconnects, J. Electrochem. Soc., 168 (2021) 042505. [91] Y. S. Chen, C. C. Lin, T. S. Chin, J. Y. Chang, C. K. Sung, Residual stress analysis of electrodeposited thick CoMnP monolayers and CoMnP/Cu multilayers, Surf. Coat. Technol., 434 (2022) 128169. [92] P. Bera, H. Seenivasan, K. S. Rajam, V. K. W. Grips, Characterization of amorphous Co–P alloy coatings electrodeposited with pulse current using gluconate bath, Appl. Surf. Sci., 258 (2012) 9544-9553. [93] M. A. Sheikholeslam, M. H. Enayati, K. Raeissi, Characterization of nanocrystalline and amorphous cobalt–phosphorous electrodeposits, Mater. Lett., 62 (2008) 3629-3631. [94] C. Guo, K. T. V. Rao, Z. Yuan, S. (Quan) He, S. Rohani, C. (Charles) Xu, Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts, Chem. Eng. Sci., 178 (2018) 248–259. [95] H. Li, Y. Zhu, K. Zhao, Q. Fu, K. Wang, Y. Wang, N. Wang, X. Lv, H. Jiang, L. Chen, Surface modification of coordination polymers to enable the construction of CoP/N, P-codoped carbon nanowires towards high-performance lithium storage, J. Colloid Interface Sci., 565 (2020) 503–512. [96] M.g Deng, H. Yang, L. Peng, L. Zhang, L. Tan, G. He, M. Shao, L. Li, Z. Wei, Insight into the boosted activity of TiO2-CoP composites for hydrogen evolution reaction: Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity, J. Energy Chem., (2022). [97] M. Lu, L. Li, D. Chen, J. Li, N.I. Klyui, W. Han, MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting, Electrochim. Acta, 330 (2020) 135210. [98] T. Li, D. Tang, C. Li, A high active hydrogen evolution reaction electrocatalyst from ionic liquids-originated cobalt phosphide/carbon nanotubes, Int. J. Hydrog. Energy, 42 (2017) 21786 – 21792. [99] Y. Hao, H. Xue, J. Sun, N. Guo, T. Song, J. Sun, Q. Wang, Tuning the Electronic Structure of CoP Embedded in N‑Doped Porous Carbon Nanocubes Via Ru Doping for Efficient Hydrogen Evolution, ACS Appl. Mater. Interfaces, 13 (2021) 56035 – 56044. [100] Y. Yao, Q. Li, X. Dai, P. Dai, D. Xu, A novel hierarchical CdS-DETA@CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation, Appl. Surf. Sci., 588 (2022) 152890. [101] L, Zhang, G, Wang, X, Hao, Z, Jina, Y, Wang, MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 395 (2020) 125113. [102] X. Xie, J. Liu, C. Gu, J. Li, Y. Zhao, C. Liu, Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting, J. Energy Chem., 64 (2022) 503–510. [103] T. Wang, Y. Jiang, Y. Zhou, Y. Du, C. Wang, In situ electrodeposition of CoP nanoparticles on carbon nanomaterial doped polyphenylene sulfide flexible electrode for electrochemical hydrogen evolution, Appl. Surf. Sci., 442 (2018) 1–11. [104] F. Wang, Y. Zhou, J. Lv, B. Dong, X. Zhang, W. Yu, J. Chi, Z. Wu, L. Wang, Y. Chai, Nickel hydroxide armour promoted CoP nanowires for alkaline hydrogen evolution at large current density, Int. J. Hydrog. Energy, 47 (2022) 1016 – 1025. [105] H. Feng, X. Sun, X. Guan, D. Zheng, W. Tian, C. Li, C. Li, M. Yan, Y. Yao, Construction of interfacial engineering on CoP nanowire arrays with CoFe-LDH nanosheets for enhanced oxygen evolution reaction, FlatChem, 26 (2021) 100225. [106] A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, XPS and NMR studies of phosphoric acid activated carbons, Carbon, 46 (2008) 2113 – 2123. [107] X. Liu, J. Niu, S. Rajendran, Y. Lei, J. Qin, X. Zhang, Electrodeposition of the manganese-doped nickelphosphorus catalyst with enhanced hydrogen evolution reaction activity and durability, Int. J. Hydrog. Energy, (2021). [108] Y. Wang, P. Liang, H. Yang, W. Li, Z. Wang, Z. Liu, J. Wang, X. Shen, Hollow CoP nanoparticles embedded in TwoeDimensional Nedoped carbon arrays enabling advanced LieSeS2 batteries with rapid kinetics, Mater. Today Energy, 17 (2020) 100423. [109] P. Ji, X. Luo, D. Chen, H. Jin, Z. Pu, W. Zeng, J. He, H. Bai, Y. Liao, S. Mu, Significantly Improved Water Oxidation of CoP Catalysts by Electrochemical Activation, ACS Sustainable Chem. Eng, 8 (2020) 17851−17859. [110] L. Zhang, X. Hao, J. Li, Y. Wang, Z. Jin, Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution, Chinese J. Catal., 41 (2020) 82–94. [111] Y. Zou, C. Guo, X. Cao, L. Zhang, T. Chen, C. Guo, J. Wang, Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution, J. Environ. Chem. Eng., 9 (2021) 106270.
|