[1] 立哲資訊,DLP與LCD比較。
[2] 黃耀論,行動投影新趨勢,數位狂潮雜誌,2011,第10期。
[3] 王書任 等人,發光二極體:讓LED發光的功臣–螢光粉,科學發展雜誌,2009,435,22-27。
[4] Z. Liu et al., The effect of the porosity on the Al2O3-YAG:Ce phosphor ceramic: Microstructure, luminescent efficiency, and luminous stability in laser-driven lighting, Journal of Alloys and Compounds, 785, 2019, 125-130.
[5] 葉耀宗 等人,螢光材料之發展現況及展望,工業材料雜誌,2016,352,22-27。
[6] Eschenfleder. A. H., Magnetic Bubble Technology.” Solid-State Sciences 14, Springer-Verlag, New York. 1981
[7] 陳以宸,應用雷射燒結技術提升摻鈰釔鋁石榴石螢光陶瓷板之發光強度,國立虎尾科技大學材料所碩士論文,106。[8] Z. Hassan et. al., Investigation of sintering temperature and Ce3+ concentration in YAG:Ce phosphor powder prepared by microwave combustion for white-light-emitting diode luminance applications, Materials Chemistry and Physics, 229, 2019, 22-31.
[9] 中華民國光電學會,LED工程師基礎概念與應用,五南,2012。
[10] 斯托克位移,維基百科。
[11] S. Ye et al., Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Materials Science and Engineering: R: Reports, 2010, 71, 1-34.
[12] 雷射發展的趨勢與應用,中工高雄刊,第22卷第1期,103年。
[13] G. D. Gautam, et al., Pulsed Nd:YAG laser beam drilling: A review, Optics and Laser Technology, 100, 2018, 183-215.
[14] V. Yadava et al., Experimental study of Nd:YAG laser beam machining—An overview, Journal of Materials Processing Technology, 2008, 195,15-26.
[15] M. Xiao et al., Laser-induced Joining of Nanoscale Materials: Processing, Properties, and Applications, nanotoday, 2020, 35, 100959.
[16] MKS, Laser Micromachining, MKS Newport, 2020.
[17] R. Petkovsek et al., Optodynamic study of multiple pulses micro drilling, Science Direct,44, e1191-e1194, 2006
[18] Y. Jinlong et al., New laser machining technology of Al2O3 ceramic with complex shape, Scivers Sciencedirect, 2012, 38, 3643-3648.
[19] B. C. Chen et al., Parametric effects on femtosecond laser ablation of Al2O3 ceramics, Ceramics International, 2013, 39, S341-S344.
[20] B. Adelmann et al., Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser, Journal of Materials Processing Technology, 2015, 221,80-86.
[21] P. Feng et al., Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites, Ceramics International, 43, 2017, 791-799.
[22] A. Kruusing, Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods, Optics and Lasers in Engineering, 41, 2004, 329-352.
[23] C. Li et al., Alcohol-assisted photoetching of silicon carbide with a femtosecond laser, Optics Communications, 28, 2009, 78-80.
[24] S. Shannon et al., Under water-laser drilling of aluminum, The International Journal of Advanced Manufacturing Technology, 69, 2013, 1765-1773.
[25] P. Zhiwei et al., Experimental Study of Low-pressure Water jet Assisted Laser Drilling on Al2O3 Ceramic, Advanced Materials, 2013,760-762, 780-784.
[26] B. Roy et al., Exploring the phase explosion of water using SOM-mediated micro-bubbles, 2016, 40, 1048-1056.
[27] H. Wang et al., Laser drilling of structural ceramics-A review, Journal of the European Ceramic Society, 2017, 37, 1157-1173.
[28] H. J Wang et al., Characterization of hole taper in laser drilling of silicon nitride ceramic under water, Ceramics International, 44, 2018, 13449-13452.
[29] G. Li et al., Laser repeat drilling of alumina ceramics in static water, Advanced Manufacturing Technology, 2018, 96, 2885-2891.
[30] D. Sciti et al., Laser-induced surface drilling of silicon carbide, Applied Surface Science, 2001, 180, 92-101.
[31] V. Yadava et al., Laser beam machining-A review, International Journal of Machine Tools and Manufacture, 2008, 48, 609-628.
[32] F. Yan et al., Study on the interaction mechanism between laser and rock during perforation, Optics & Laser Technology, 2013, 54, 303-308.
[33] M. Gaidys et al., Rapid high-quality 3D micro-machining by optimised efficient ultrashort laser ablation, Optics and Lasers in Engineering, 2019, 114, 83-89.
[34] A. M. Zhang et al., The interaction of an underwater explosion bubble and an elastic–plastic structure, Applied Ocean Research, 2008, 30, 159-171.
[35] A. M. Zhang et al., The dynamics of three-dimensional underwater explosion bubble, Journal of Sound and Vibration, 2008, 311, 1196-1212.
[36] A. Krelle et al,. A study of bubble collapse pressure pulse waves from small scale underwater explosions near the water surface, Journal of Sound and Vibration, 2018, 435, 91-103.
[37] S. Zhang et al., Numerical study on motion of the air-gun bubble based on boundary integral method, Ocean Engineering, 2018, 154, 70-80.
[38] X. Yao et al., A new experimental methodology to assess the wall pressure generated by a high-voltage underwater Spark-generated bubble, Results in Physics, 2019, 12, 571-574.
[39] Y. Zhang et al., Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall, Experimental Thermal and Fluid Science, 2019,105, 289-306.
[40] H. K. Park et al., 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes, Optics Express, 2011, 19, 25593-25601.
[41] H. C. Kuo et al., Patterned structure of REMOTE PHOSPHOR for phosphor-converted white LEDs, Optics Express, 2011, 19, A930-A936.
[42] H. C. Chen et al., A novel randomly textured phosphor structure for highly efficient white light-emitting diodes, Nanoscale Research letters, 2012, 7, 188.
[43] Z. He et al., Surface modification of Y3Al5O12:Ce3+ phosphor by hydrofluoric acid wet etching, Journal of Luminescence, 2013, 136, 351-354.
[44] S. Wang et al., Laser patterning of Y3Al5O12:Ce3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs, Optics Express, 2016, 24, 17522-17531.
[45] H. Y. Lin et al., Optimization of nano-honeycomb structures for flexible w-LEDs, Optics Express, 2017, 25, 20466-20476.
[46] L. Zhang et al., Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs, Applied Surface Science, 2018, 455, 425-432.
[47] A. Wagner et al., Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening, Journal of Luminescence, 2019, 213, 454-458.
[48] N. P. Padture et al., Low Thermal Conductivity in Garnets, American Ceramic Society, 1997, 80, 1018-1020.
[49] C. Cozzan et al., Heat-Conducting Phosphor Composites for High-Power Laser Lighting, ACS Appl, 2018, 10, 5673-5681.
[50] B. Wena et al., Thermal conductivity of Ce3+ doped (Y1-xGdx)3Al5O12 ceramic phosphor, Journal of Luminescence, 2020, 221, 116886.
[51]掺铈钇铝石榴石(YAG: Ce),中國科學院上海光學精密機械研究所,雷射與紅外材料實驗室。
[52]折射率,維基百科。
[53] X光繞射儀,維基百科。
[54]掃描式電子顯微鏡,維基百科。
[55]光致發光,維基百科。
[56]騰毅數位科技,投影技術3LCD與DLP之比較
[57] BenQ,投影機色彩、色域、色輪傻傻分不清?投影機色域秘辛一次就懂。
[58]陽明光學,投影機色輪。
[59]胥国祥等人,雷射+GMAW複合熱源焊熔池流體流動的數值分析,金屬學報,2015,51,713-723。
[60] Y. Zhang et al., Dynamic evolution of keyhole during multi-pulse drilling with a millisecond laser on 304 stainless steel, Optics & Laser Technology, 2022, 152, 108151.
[61]陳尚青等人,實物現場 X-ray 殘留應力量測及其振動應力消除技術,科儀新知,2016,207。
[62]張宏宜等人,節能製程製備晶核控制成長螢光體及其發光與結晶性研究,行政院國家科學委員會專題研究計畫研究成果報告,2009。
[63] A. Kruusing, Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods, Optics and Lasers in Engineering, 41, 2004, 329-352.
[64]陳建至等人,研究 Q 開關脈衝式雷射產生噴濺於自由水平面上和噴濺隨時間演進的結構變化,先進雷射技術與應用專題,2014,35,44-53。
[65]顏富士等人,固態反應法合成預定粒徑YAG(Y3Al5O12)粉末之研究成果報告,行政院國家科學委員會專題研究計畫,2011。
[66] B. Roy et al., Exploring the phase explosion of water using SOM-mediated micro-bubbles, New Journal of Chemistry, 2016, 2.
[67] Y. C. Lin et al., Inorganic Phosphor Materials for Lighting, Topics in Current Chemistry, 2016, 374, 21.
[68]許詠盛,氮化銦鎵/氮化鎵奈米線之光學特性及能隙調變之研究,國立交通大學電子物理研究所,2011。