|
1.徐祥恩, 使用臨床資料計算腹主動脈鈣化分數及鈣化總長度, in 資訊工程學系. 2021, 亞洲大學: 台中市. p. 53. 2.施祈安, 應用機器視覺與深度學習於鋼珠表面之瑕疵檢測, in 工業工程與管理系. 2021, 國立臺北科技大學: 台北市. p. 60. 3.劉, 振., 組織病理染色技術與圖譜 : 組織化學染色 = An Atlas and manual of histopathological staining methods-histochemistry / 劉振軒等編著. 初版 ed. Atlas and manual of histopathological staining methods : histochemistry. 1996, 苗栗縣竹南: 台灣養豬科學硏究所. 4.組織病理相關-石蠟切片製作流程及相關儀器. Available from: https://smedpath.kmu.edu.tw/index.php/%E5%84%80%E5%99%A8%E8%A8%AD%E5%82%99/%E7%B5%84%E7%B9%94%E7%97%85%E7%90%86%E7%9B%B8%E9%97%9C. 5.Wang, C.-Y., et al. CSPNet: A new backbone that can enhance learning capability of CNN. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020. 6.He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 7.Girshick, R. Fast r-cnn. in Proceedings of the IEEE international conference on computer vision. 2015. 8.Ren, S., et al., Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015. 28. 9.Lin, T.-Y., et al. Feature pyramid networks for object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. 10.Hinton, G.E. and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. science, 2006. 313(5786): p. 504-507. 11.Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. 12.Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 13.Yolo:基於深度學習的物件偵測 (含YoloV3). Available from: https://mropengate.blogspot.com/2018/06/yolo-yolov3.html. 14.Redmon, J. and A. Farhadi, Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. 15.Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. 16.Ultralytics. Yolov5. Available from: https://github.com/ultralytics/yolov5.
|