|
1.Siegel, R.L., et al., Cancer statistics, 2023. CA Cancer J Clin, 2023. 73(1): p. 17-48. 2.Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2021. 7(1): p. 6. 3.Villanueva, A., Hepatocellular Carcinoma. N Engl J Med, 2019. 380(15): p. 1450-1462. 4.Global Burden of Disease Liver Cancer, C., et al., The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol, 2017. 3(12): p. 1683-1691. 5.Thandassery, R.B., U. Goenka, and M.K. Goenka, Role of local ablative therapy for hepatocellular carcinoma. J Clin Exp Hepatol, 2014. 4(Suppl 3): p. S104-11. 6.Fernandes, E.S.M., et al., Treatment strategies for locally advanced hepatocellular carcinoma. Transl Gastroenterol Hepatol, 2019. 4: p. 12. 7.Lencioni, R., P. Petruzzi, and L. Crocetti, Chemoembolization of hepatocellular carcinoma. Semin Intervent Radiol, 2013. 30(1): p. 3-11. 8.Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90. 9.Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2016. 2: p. 16018. 10.Lang, L., FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology, 2008. 134(2): p. 379. 11.Puig, S., et al., The elemental role of iron in DNA synthesis and repair. Metallomics, 2017. 9(11): p. 1483-1500. 12.Liu, J., et al., Hepcidin: A Promising Therapeutic Target for Iron Disorders: A Systematic Review. Medicine (Baltimore), 2016. 95(14): p. e3150. 13.Guldiken, N., et al., Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases. BMC Med, 2021. 19(1): p. 39. 14.Latunde-Dada, G.O., Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj, 2017. 1861(8): p. 1893-1900. 15.Kew, M.C., Hepatic iron overload and hepatocellular carcinoma. Liver Cancer, 2014. 3(1): p. 31-40. 16.Lu, B., et al., The Role of Ferroptosis in Cancer Development and Treatment Response. Front Pharmacol, 2017. 8: p. 992. 17.Li, J., et al., Ferroptosis: past, present and future. Cell Death Dis, 2020. 11(2): p. 88. 18.Li, J.Y., Y.M. Yao, and Y.P. Tian, Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front Immunol, 2021. 12: p. 701163. 19.Huang, Y., et al., Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res, 2005. 65(16): p. 7446-54. 20.Tan, Y., et al., Correction to: Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res, 2021. 40(1): p. 296. 21.Broz, P., P. Pelegrin, and F. Shao, The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol, 2020. 20(3): p. 143-157. 22.Kovacs, S.B. and E.A. Miao, Gasdermins: Effectors of Pyroptosis. Trends Cell Biol, 2017. 27(9): p. 673-684. 23.Liu, Z., et al., Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition. Structure, 2018. 26(5): p. 778-784 e3. 24.Ding, J., et al., Erratum: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016. 540(7631): p. 150. 25.Chen, X., et al., Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res, 2016. 26(9): p. 1007-20. 26.Hamarsheh, S. and R. Zeiser, NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front Immunol, 2020. 11: p. 1444. 27.Hsu, S.K., et al., Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics, 2021. 11(18): p. 8813-8835. 28.Xia, S., et al., Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021. 593(7860): p. 607-611. 29.McKenzie, B.A., V.M. Dixit, and C. Power, Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci, 2020. 43(1): p. 55-73. 30.Ruhl, S., et al., ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 2018. 362(6417): p. 956-960. 31.Wang, Y., et al., Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017. 547(7661): p. 99-103. 32.Jiang, M., et al., The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov, 2020. 6(1): p. 112. 33.Belal, M., et al., Recent advances in the synthesis of 1, 1-diarylalkanes by transition-metal catalysis. Science China Chemistry, 2021: p. 1-21. 34.Yu, F.L. and W. Bender, A proposed mechanism of tamoxifen in breast cancer prevention. Cancer Detect Prev, 2002. 26(5): p. 370-5. 35.Lipov, E.G., J.R. Joshi, and S. Sanders, A new mechanism of action for tamoxifen. Lancet Oncol, 2009. 10(6): p. 542. 36.Constantinescu, T. and C.N. Lungu, Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci, 2021. 22(21). 37.Salehi, B., et al., Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol, 2020. 11: p. 592654. 38.Pereira, D., et al., New Chalcone-Triazole Hybrids with Promising Antimicrobial Activity in Multidrug Resistance Strains. Int J Mol Sci, 2022. 23(22). 39.Rocha, S., et al., A Systematic Review on Anti-diabetic Properties of Chalcones. Curr Med Chem, 2020. 27(14): p. 2257-2321. 40.Noser, A.A., et al., Newly Synthesized Pyrazolinone Chalcones as Anticancer Agents via Inhibiting the PI3K/Akt/ERK1/2 Signaling Pathway. ACS Omega, 2022. 7(29): p. 25265-25277. 41.Ouyang, Y., et al., Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules, 2021. 11(6). 42.Maciejewska, N., et al., Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Sci Rep, 2022. 12(1): p. 3703. 43.Li, K., et al., A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int, 2020. 20: p. 36. 44.Elkhalifa, D., et al., Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur J Med Chem, 2020. 187: p. 111954. 45.Higuchi, K., et al., Sofalcone, a gastroprotective drug, promotes gastric ulcer healing following eradication therapy for Helicobacter pylori: a randomized controlled comparative trial with cimetidine, an H2-receptor antagonist. J Gastroenterol Hepatol, 2010. 25 Suppl 1: p. S155-60. 46.Kim, W., et al., Sofalcone, a gastroprotective drug, covalently binds to KEAP1 to activate Nrf2 resulting in anti-colitic activity. Eur J Pharmacol, 2019. 865: p. 172722. 47.Beltramino, R., A. Penenory, and A.M. Buceta, An open-label, randomised multicentre study comparing the efficacy and safety of CYCLO 3 FORT versus hydroxyethyl rutoside in chronic venous lymphatic insufficiency. Int Angiol, 1999. 18(4): p. 337-42. 48.Boyle, P., C. Diehm, and C. Robertson, Meta-analysis of clinical trials of Cyclo 3 Fort in the treatment of chronic venous insufficiency. Int Angiol, 2003. 22(3): p. 250-62. 49.Boonchai, W., et al., Randomized investigator-blinded comparative study of moisturizer containing 4-t-butylcyclohexanol and licochalcone A versus 0.02% triamcinolone acetonide cream in facial dermatitis. J Cosmet Dermatol, 2018. 17(6): p. 1130-1135. 50.Shlomovitz, I., M. Speir, and M. Gerlic, Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal, 2019. 17(1): p. 139. 51.Trahtemberg, U., et al., Calcium, leukocyte cell death and the use of annexin V: fatal encounters. Apoptosis, 2007. 12(10): p. 1769-80. 52.Thome, M.P., et al., Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci, 2016. 129(24): p. 4622-4632. 53.Kaufmann, S.H. and W.C. Earnshaw, Induction of apoptosis by cancer chemotherapy. Exp Cell Res, 2000. 256(1): p. 42-9. 54.Yang, S., et al., New Mechanism of Gemcitabine and Its Phosphates: DNA Polymerization Disruption via 3'-5' Exonuclease Inhibition. Biochemistry, 2020. 59(45): p. 4344-4352. 55.Hill, R., et al., Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy. Cell Death Dis, 2013. 4: p. e791. 56.Kemnitzer, W., et al., Discovery of N-aryl-9-oxo-9H-fluorene-1-carboxamides as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 9-oxo-9H-fluorene ring. Bioorg Med Chem Lett, 2010. 20(3): p. 1288-92. 57.Guo, H., et al., Oxidative stress and inflammatory effects in human lung epithelial A549 cells induced by phenanthrene, fluorene, and their binary mixture. Environ Toxicol, 2020. 58.Jia, Z., et al., Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. Ecotoxicol Environ Saf, 2019. 180: p. 168-178. 59.Halasi, M., et al., ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J, 2013. 454(2): p. 201-8. 60.Nagata, S., et al., Exposure of phosphatidylserine on the cell surface. Cell Death Differ, 2016. 23(6): p. 952-61. 61.Gobin, C.M., et al., Cell Dissociation Enzymes Affect Annexin V/Flow-Cytometric Apoptotic Assay Outcomes After miRNA-based Transient Transfection. Anticancer Res, 2022. 42(6): p. 2819-2825. 62.Rieger, A.M., et al., Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp, 2011(50). 63.Kahraman, D.C., et al., A new triazolothiadiazine derivative inhibits stemness and induces cell death in HCC by oxidative stress dependent JNK pathway activation. Sci Rep, 2022. 12(1): p. 15139. 64.Aman, Y., et al., Autophagy in healthy aging and disease. Nat Aging, 2021. 1(8): p. 634-650. 65.Rubinsztein, D.C., G. Marino, and G. Kroemer, Autophagy and aging. Cell, 2011. 146(5): p. 682-95. 66.Chen, S., et al., Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol, 2014. 34(18): p. 3435-49. 67.Hansen, M., D.C. Rubinsztein, and D.W. Walker, Publisher Correction: Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol, 2018. 19(9): p. 611. 68.Najafi, S., E.M. Abo-Ali, and V.V. Dukhande, Methods for Studying TNFalpha-Induced Autophagy. Methods Mol Biol, 2020. 2108: p. 131-146. 69.Runwal, G., et al., LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep, 2019. 9(1): p. 10147. 70.Hasan, A., et al., Crosstalk Between ROS and Autophagy in Tumorigenesis: Understanding the Multifaceted Paradox. Front Oncol, 2022. 12: p. 852424. 71.Wen, C., et al., ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis, 2019. 10(11): p. 809. 72.Yang, S.Y., et al., ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress. BMC Complement Altern Med, 2019. 19(1): p. 139. 73.Zhang, J., et al., Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3beta/Nrf2 signalling pathway in vitro. J Cell Mol Med, 2020. 24(16): p. 8977-8985. 74.Liu, K., et al., Induction of autophagy-dependent ferroptosis to eliminate drug-tolerant human retinoblastoma cells. Cell Death Dis, 2022. 13(6): p. 521. 75.Liu, Y., et al., Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther, 2021. 28(1-2): p. 55-63. 76.Sun, Y., et al., Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis, 2021. 12(11): p. 1028. 77.Wang, C., et al., Dual degradation mechanism of GPX4 degrader in induction of ferroptosis exerting anti-resistant tumor effect. Eur J Med Chem, 2023. 247: p. 115072. 78.Ding, Y., et al., Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol, 2021. 14(1): p. 19. 79.Bao, M.H. and C.C. Wong, Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells, 2021. 10(7). 80.Coriat, R., et al., Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther, 2012. 11(10): p. 2284-93. 81.Liu, W., et al., Glutathione peroxidase 4-dependent glutathione high-consumption drives acquired platinum chemoresistance in lung cancer-derived brain metastasis. Clin Transl Med, 2021. 11(9): p. e517. 82.Li, Y., et al., Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J Exp Clin Cancer Res, 2023. 42(1): p. 6. 83.Mashimo, M., et al., The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J Biol Chem, 2021. 296: p. 100046. 84.Porter, A.G. and R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104. 85.Gobeil, S., et al., Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ, 2001. 8(6): p. 588-94. 86.Zhang, Y., et al., A novel 3',5'-diprenylated chalcone induces concurrent apoptosis and GSDME-dependent pyroptosis through activating PKCdelta/JNK signal in prostate cancer. Aging (Albany NY), 2020. 12(10): p. 9103-9124. 87.Herr, D.R., et al., Ultrastructural Characteristics of DHA-Induced Pyroptosis. Neuromolecular Med, 2020. 22(2): p. 293-303. 88.Li, Z., et al., Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response. Nat Commun, 2022. 13(1): p. 6321. 89.Cai, J., et al., Correction to: Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-IotaIota. J Exp Clin Cancer Res, 2021. 40(1): p. 298. 90.Hsu, S.K., et al., The Role of Nonapoptotic Programmed Cell Death - Ferroptosis, Necroptosis, and Pyroptosis - in Pancreatic Ductal Adenocarcinoma Treatment. Front Oncol, 2022. 12: p. 872883. 91.Pedrera, L., et al., Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ, 2021. 28(5): p. 1644-1657. 92.Dai, E., et al., ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun, 2020. 522(2): p. 415-421. 93.Andrews, N.W., P.E. Almeida, and M. Corrotte, Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol, 2014. 24(12): p. 734-42. 94.Jimenez, A.J., et al., ESCRT machinery is required for plasma membrane repair. Science, 2014. 343(6174): p. 1247136. 95.Gong, Y.N., et al., ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell, 2017. 169(2): p. 286-300 e16. 96.Gong, L., et al., PharmGKB summary: sorafenib pathways. Pharmacogenet Genomics, 2017. 27(6): p. 240-246. 97.Karovic, S., et al., Patient-Level Adverse Event Patterns in a Single-Institution Study of the Multi-Kinase Inhibitor Sorafenib. Clin Transl Sci, 2016. 9(5): p. 260-266. 98.Yadav, B., et al., Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J, 2015. 13: p. 504-13. 99.Kepp, O., et al., Extracellular nucleosides and nucleotides as immunomodulators. Immunol Rev, 2017. 280(1): p. 83-92. 100.Roh, J.S. and D.H. Sohn, Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw, 2018. 18(4): p. e27. 101.Efimova, I., et al., Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer, 2020. 8(2). 102.Erkes, D.A., et al., Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov, 2020. 10(2): p. 254-269. 103.Di Virgilio, F., et al., Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer, 2018. 18(10): p. 601-618. 104.Boutilier, A.J. and S.F. Elsawa, Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci, 2021. 22(13). 105.Wang, N., H. Liang, and K. Zen, Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol, 2014. 5: p. 614. 106.Liu, J., et al., New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int, 2021. 21(1): p. 389. 107.Zheng, X.F., et al., Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression. PLoS One, 2013. 8(5): p. e63967. 108.Zhou, X., X. Liu, and L. Huang, Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention. Adv Funct Mater, 2021. 31(5). 109.Su, Z., et al., Cancer therapy in the necroptosis era. Cell Death Differ, 2016. 23(5): p. 748-56. 110.Madden, E.C., et al., Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer, 2020. 6(6): p. 489-505. 111.Vasan, N., J. Baselga, and D.M. Hyman, A view on drug resistance in cancer. Nature, 2019. 575(7782): p. 299-309. 112.Tang, W., et al., The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther, 2020. 5(1): p. 87. 113.Zhu, Y.J., et al., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin, 2017. 38(5): p. 614-622. 114.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 115.Todaro, M., et al., Correction to: Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ, 2019. 26(12): p. 2808-2809. 116.Chen, K.F., et al., Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem, 2012. 55: p. 220-7. 117.Wang, L., et al., Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett, 2019. 450: p. 22-31. 118.Yatim, N., S. Cullen, and M.L. Albert, Dying cells actively regulate adaptive immune responses. Nat Rev Immunol, 2017. 17(4): p. 262-275. 119.Wu, L.S., et al., LPS Enhances the Chemosensitivity of Oxaliplatin in HT29 Cells via GSDMD-Mediated Pyroptosis. Cancer Manag Res, 2020. 12: p. 10397-10409. 120.Wu, M., et al., Corrigendum to "A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma" [EBioMedicine 41 (2019) 244-255]. EBioMedicine, 2021. 63: p. 103041. 121.Peng, Z., et al., GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration. Signal Transduct Target Ther, 2020. 5(1): p. 159. 122.Zhou, Z., et al., Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020. 368(6494).
|