|
[1]R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” CVPR, 2014. [2]R. Girshick, “Fast R-CNN,” ICCV, 2015. [3]S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” arXiv:1506.01497, 2015. [4]K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask R-CNN,” arXiv:1703.06870, 2015. [5]J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” arXiv:1506.02640, 2015. [6]J. Redmon, A. Farhadi, “YOLO9000: Better, Faster, Stronger,” arXiv:1612.08242, 2016. [7]D. Bolya, C. Zhou, F. Xiao, Y. Jae Lee, “YOLACT: Real-time Instance Segmentation,” ICCV, 2019. [8]Tsung-Yi Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, “Feature Pyramid Networks for Object Detection,” arXiv:1612.03144, 2016. [9]W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, Cheng-Yang Fu, A. C. Berg, “SSD: Single Shot MultiBox Detector,” ECCV, 2016. [10]J. Long, E. Shelhamer, T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” CVPR, 2015. [11]L. Kong, B. Jiang, D. Luo, W. Chu, X. Huang, Y. Tai, C. Wang, J. Yang, “IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation,” CVPR, 2022. [12]A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, “Simple Online and Realtime Tracking,” ICIP, 2016. [13]Tsung-Yi Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. Lawrence Zitnick, P. Dollár, “Microsoft COCO: Common Objects in Context,” arXiv:1405.0312, 2014. [14]N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, T. Huang, “YouTube-VOS: A Large-Scale Video Object Segmentation Benchmark,” arXiv:1809.03327, 2018. [15]Y. Tang, “Deep Learning using Linear Support Vector Machines,” ICML, 2013. [16]C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, “Going Deeper with Convolutions,” arXiv:1409.4842, 2014. [17]J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement” arXiv:1804.02767, 2018. [18]Tsung-Yi Lin, P. Goyal, R. Girshick, K. He, P. Dollár, “Focal Loss for Dense Object Detection,” arXiv:1708.02002, 2017. [19]M. Tan, Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML, 2019. [20]A. Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv:2004.10934, 2020. [21]J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, “Deformable Convolutional Networks,” ICCV, 2017. [22]Z. Huang, L. Huang, Y. Gong, C. Huang, X. Wang, “Mask Scoring R-CNN,” CVPR, 2019. [23]D. Bolya, C. Zhou, F. Xiao, Y. Jae Lee, “YOLACT++: Better Real-time Instance Segmentation,” arXiv:1912.06218, 2019. [24]H. Liu, R. A. Rivera Soto, F. Xiao, Y. Jae Lee, “YolactEdge: Real-time Instance Segmentation on the Edge,” arXiv:1912.06218, 2020. [25]K. He, X. Zhang, S. Ren,, and J. Sun, “Deep residual learning for image recognition.” CVPR, pp. 770-778, 2016.
|