|
[1]J.W. Martin, in Materials for Engineering (Third Edition), 2006 Available:https://www.sciencedirect.com/science/article/abs/pii/B9781845691578500034 [2]Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293. [3]Ronneberger, O., Fischer, P., and Brox, T., "U-net: Convolutional networks for biomedical image segmentation", in Proceedings of the International Conference on Medical image computing and computer-assisted intervention, 2015: Springer. [4]Chen, L. C., et al., “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”, arXiv, Jun, 2, 2016. Available: https://doi.org/10.48550/arXiv.1606.00915. [5]ISO, Microstructure of cast irons -- Part 1: Graphite classification by visual analysis, 2017, Available: https://www.sis.se/en/produkter/metallurgy/ferrous-metals/irons/iso-945-12017/ [6]Qin, X., et al., “U2-Net: Going deeper with nested U-structure for salient object detection”, Pattern Recognition, vol. 106, 2020. [7]Zeng, H., Peng, S. and Li, D., “Deeplabv3+ semantic segmentation model based on feature cross attention mechanism”, Journal of Physics: Conference Series. IOP Publishing, 2020. [8]Xie, E., et al, “SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers” , arXiv, May. 31, 2021. Available: https://doi.org/10.48550/arXiv.2105.15203. [9]Liu, Y., et al.,“PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation”, arXiv, Jan. 15, 2021 Available: https://doi.org/10.48550/arXiv.2101.06175 [10]R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. Highresolution image synthesis with latent diffusion models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [11]AUTOMATIC111, 2023, stable-diffusion-webui, https://github.com/AUTOMATIC1111/stable-diffusion-webui(2023) [12]US patent 2485760, Keith Millis, "Cast Ferrous Alloy", issued 1949-10-25 [13]"Ductile Iron Data - Section 2". www.ductile.org. Archived from the original on 2001-01-29. [14]ASTM A247-19 Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. (2019, February 22). ASTM COMPASS. https://www.astm.org/a0247-19.html [15]GB/T 9441-2021 Metallographic Test Method for Spheroidal Graphite Cast Iron. (2021, December 31). https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D24E4E418C01F543351FA0A1F82D3659 [16]提升石墨球化率量測、評估的效率. (n.d.). Kyence. https://www.keyence.com.tw/ss/products/microscope/vhx-casestudy/automobile/graphite-spheroidization-rate.jsp [17]劉平. (2004, February 26). 圖像分割閾值選取技術綜述. Rocky的部落格. https://rocky69.pixnet.net/blog/post/200429091 [18]自适应阈值(adaptiveThreshold)分割原理及实现. (2022, December 13). 古月居. https://www.guyuehome.com/41457 [19]区域生长算法原理及实现. (2022, December 11). 古月居. https://www.guyuehome.com/41458 [20]基于区域的图像分割——区域分裂与合并. (2020, January 19). GuoYi的博客. https://reurl.cc/11KxzD [21]Level Set (水平集)算法是什么?. (2016, March 26). 知乎. https://www.zhihu.com/question/22608763 [22][Day24]什麼是機器學習Machine Learning?. (2018, January 12). IT邦幫忙. https://ithelp.ithome.com.tw/articles/10196922 [23]Labelme. (2023, May 16). GITHUB. https://github.com/wkentaro/labelme
|