|
1.Dekker, E., et al., Colorectal cancer. Lancet, 2019. 394(10207): p. 1467-1480. 2.Hu, Z., et al., Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet, 2019. 51(7): p. 1113-1122. 3.Desmeules, P., et al., Retrospective Assessment of Complementary Liquid Biopsy on Tissue Single-Gene Testing for Tumor Genotyping in Advanced NSCLC. Curr Oncol, 2023. 30(1): p. 575-585. 4.Arnold, C. and P. Webster, 11 clinical trials that will shape medicine in 2023. Nat Med, 2022. 28(12): p. 2444-2448. 5.Blumen, H., K. Fitch, and V. Polkus, Comparison of Treatment Costs for Breast Cancer, by Tumor Stage and Type of Service. Am Health Drug Benefits, 2016. 9(1): p. 23-32. 6.Mantovani, F., L. Collavin, and G. Del Sal, Mutant p53 as a guardian of the cancer cell. Cell Death Differ, 2019. 26(2): p. 199-212. 7.Follain, G., et al., Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer, 2020. 20(2): p. 107-124. 8.Lin, D., et al., Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther, 2021. 6(1): p. 404. 9.Janni, W.J., et al., Pooled Analysis of the Prognostic Relevance of Circulating Tumor Cells in Primary Breast Cancer. Clin Cancer Res, 2016. 22(10): p. 2583-93. 10.Anvari, S., E. Osei, and N. Maftoon, Interactions of platelets with circulating tumor cells contribute to cancer metastasis. Sci Rep, 2021. 11(1): p. 15477. 11.Gkountela, S., et al., Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell, 2019. 176(1-2): p. 98-112.e14. 12.Aceto, N., Bring along your friends: Homotypic and heterotypic circulating tumor cell clustering to accelerate metastasis. Biomed J, 2020. 43(1): p. 18-23. 13.Qazi, H., Z.D. Shi, and J.M. Tarbell, Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One, 2011. 6(5): p. e20348. 14.Yankaskas, C.L., et al., The fluid shear stress sensor TRPM7 regulates tumor cell intravasation. Sci Adv, 2021. 7(28). 15.Ring, A., et al., Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer, 2023. 23(2): p. 95-111. 16.Angulo-Urarte, A., T. van der Wal, and S. Huveneers, Cell-cell junctions as sensors and transducers of mechanical forces. Biochim Biophys Acta Biomembr, 2020. 1862(9): p. 183316. 17.Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 2020. 5(1): p. 28. 18.Po, J.W., et al., Improved ovarian cancer EMT-CTC isolation by immunomagnetic targeting of epithelial EpCAM and mesenchymal N-cadherin. J Circ Biomark, 2018. 7: p. 1849454418782617. 19.Negishi, R., et al., Transcriptomic profiling of single circulating tumor cells provides insight into human metastatic gastric cancer. Commun Biol, 2022. 5(1): p. 20. 20.Alvarado-Estrada, K., et al., Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep, 2021. 11(1): p. 2800. 21.Brabletz, S., et al., Dynamic EMT: a multi-tool for tumor progression. Embo j, 2021. 40(18): p. e108647. 22.Hope, J.M., et al., Fluid shear stress enhances T cell activation through Piezo1. BMC Biol, 2022. 20(1): p. 61. 23.Xu, S., et al., New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow. Cardiovasc Res, 2017. 113(5): p. 508-518. 24.Kuck, L., et al., Shear Stress Ameliorates Superoxide Impairment to Erythrocyte Deformability With Concurrent Nitric Oxide Synthase Activation. Front Physiol, 2019. 10: p. 36. 25.Nagarajan, S., et al., Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells. Sci Rep, 2016. 6: p. 26935. 26.Fleming, I., Molecular mechanisms underlying the activation of eNOS. Pflugers Arch, 2010. 459(6): p. 793-806. 27.Gayer, C.P. and M.D. Basson, The effects of mechanical forces on intestinal physiology and pathology. Cell Signal, 2009. 21(8): p. 1237-44. 28.Follain, G., et al., Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Dev Cell, 2018. 45(1): p. 33-52.e12. 29.Zou, D., et al., Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Front Oncol, 2021. 11: p. 592761. 30.Lim, K.H., et al., Tumour maintenance is mediated by eNOS. Nature, 2008. 452(7187): p. 646-9. 31.Kashfi, K., Nitric oxide in cancer and beyond. Biochem Pharmacol, 2020. 176: p. 114006. 32.Stoner, L., et al., The importance of velocity acceleration to flow-mediated dilation. Int J Vasc Med, 2012. 2012: p. 589213. 33.Huang, Q., et al., Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. J Exp Clin Cancer Res, 2020. 39(1): p. 25. 34.Shiue, T.W., et al., Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg Chem, 2012. 51(9): p. 5400-8. 35.Chen, P.H., et al., Hydrogen sulfide increases nitric oxide production and subsequent S-nitrosylation in endothelial cells. ScientificWorldJournal, 2014. 2014: p. 480387. 36.Weth, A., et al., A novel device for elimination of cancer cells from blood specimens. Sci Rep, 2020. 10(1): p. 10181. 37.Cornelison, R.C., et al., Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep, 2018. 8(1): p. 17057. 38.Fan, R., et al., Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Sci Rep, 2016. 6: p. 27073. 39.Gala de Pablo, J., et al., Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy. J Raman Spectrosc, 2018. 49(8): p. 1323-1332. 40.Roper, S.J., et al., 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep, 2021. 11(1): p. 4259. 41.Kuburich, N.A., et al., In Vitro Quantification of Cancer Stem Cells Using a Mammosphere Formation Assay. Methods Mol Biol, 2022. 2429: p. 509-513. 42.Zhao, J., et al., Separation and single-cell analysis for free gastric cancer cells in ascites and peritoneal lavages based on microfluidic chips. EBioMedicine, 2023. 90: p. 104522. 43.Antunes, T.T., et al., Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension. Hypertension, 2016. 67(4): p. 763-73. 44.Seretis, A., et al., Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci Rep, 2019. 9(1): p. 8565. 45.Connaughton, M. and M. Dabagh, Association of Hypertension and Organ-Specific Cancer: A Meta-Analysis. Healthcare (Basel), 2022. 10(6). 46.Cohen, J.B., et al., Cancer Therapy-Related Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2023. 80(3): p. e46-e57. 47.Małyszko, J., et al., Hypertension in malignancy-an underappreciated problem. Oncotarget, 2018. 9(29): p. 20855-20871. 48.Österlund, P., et al., Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer, 2011. 104(4): p. 599-604. 49.Chang, S.F., et al., Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3927-32. 50.Gavet, O. and J. Pines, Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol, 2010. 189(2): p. 247-59. 51.Jin, P., S. Hardy, and D.O. Morgan, Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J Cell Biol, 1998. 141(4): p. 875-85. 52.Chen, K., et al., The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis, 2020. 9(9): p. 83. 53.Lee, Y.H., C.W. Lai, and Y.C. Cheng, Fluid Shear Stress Induces Cell Cycle Arrest in Human Urinary Bladder Transitional Cell Carcinoma Through Bone Morphogenetic Protein Receptor-Smad1/5 Pathway. Cell Mol Bioeng, 2018. 11(3): p. 185-195. 54.Qin, X., et al., MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci U S A, 2010. 107(7): p. 3240-4. 55.Saraste, A., Morphologic criteria and detection of apoptosis. Herz, 1999. 24(3): p. 189-95. 56.Regmi, S., A. Fu, and K.Q. Luo, High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System. Sci Rep, 2017. 7: p. 39975. 57.Feng, Y., et al., Timing of apoptosis onset depends on cell cycle progression in peripheral blood lymphocytes and lymphocytic leukemia cells. Oncol Rep, 2007. 17(6): p. 1437-44. 58.Mahmoud, M.M., et al., Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep, 2017. 7(1): p. 3375. 59.Rajendran, V. and M.V. Jain, In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. Methods Mol Biol, 2018. 1692: p. 89-95. 60.Liu, X., et al., Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci Adv, 2019. 5(6): p. eaav4275. 61.Chen, B.J., et al., What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol, 2020. 235(12): p. 8983-8995. 62.Vilchez Mercedes, S.A., et al., Decoding leader cells in collective cancer invasion. Nat Rev Cancer, 2021. 21(9): p. 592-604. 63.Barbazán, J., et al., Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PLoS One, 2012. 7(7): p. e40476. 64.Cuvelier, M., et al., Distribution and propagation of mechanical stress in simulated structurally heterogeneous tissue spheroids. Soft Matter, 2021. 17(27): p. 6603-6615. 65.Basehore, S.E., et al., Laminar Flow on Endothelial Cells Suppresses eNOS O-GlcNAcylation to Promote eNOS Activity. Circ Res, 2021. 129(11): p. 1054-1066. 66.Aulak, K.S., et al., Specific O-GlcNAc modification at Ser-615 modulates eNOS function. Redox Biol, 2020. 36: p. 101625. 67.Xu, W., et al., The role of nitric oxide in cancer. Cell Res, 2002. 12(5-6): p. 311-20. 68.Wang, H., et al., Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel), 2020. 12(7). 69.Zorova, L.D., et al., Mitochondrial membrane potential. Anal Biochem, 2018. 552: p. 50-59. 70.Lammerding, J. and R.T. Lee, Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies. J Clin Invest, 2007. 117(7): p. 1749-52. 71.Marshall, W.F., et al., What determines cell size? BMC Biol, 2012. 10: p. 101. 72.Perea Paizal, J., S.H. Au, and C. Bakal, Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis. Br J Cancer, 2021. 124(1): p. 58-65. 73.Huang, Q., et al., Fluid shear stress and tumor metastasis. Am J Cancer Res, 2018. 8(5): p. 763-777. 74.Panciera, T., et al., Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol, 2017. 18(12): p. 758-770.
|