|
[1]International Roadmap for Devices and System, (2018) 5-17. [2]Y. L. Chin, B. S. Chiou, Effects of underlayer dielectric on the thermal characteristics and electromigration resistance of copper interconnect, J. Appl. Phys. , 42 (2003) 7502-7509. [3]S. Sharma, M. Kumar, S. Rani, D. Kumar, Deposition and characterization of 3-aminopropyltrimethoxysilane monolayer diffusion barrier for copper metallization, J. Matt. Res. , 10 (2014) 11663. [4]H. J. Lee, T. E. Hong, S. H. Kim, Atomic layer deposited self-forming Ru-Mn diffusion barrier for seedless Cu interconnects, J. Alloys Compd. , 686 (2016) 1025-1031. [5]M. Lapedus, What Will Replace Dual Damascene?, Semiconductor Engineering, Jan. 2013. [6]Y. L. Jiang, G. P. Ru, X. P. Qu, B. Z. Li, X-ray photoelectron spectroscopy study of NiSi formation on shallow junctions, Appl. Surf. Sci. , 256 (2009) 698-701. [7]G. Utlu, N. Artunc, S. Budak, S. Tari, Structural and electrical characterization of the nickel silicide films formed at 850oC by rapid thermal annealing of the Ni/Si(100) films, Appl. Surf. Sci. , 256 (2010) 5069-5075. [8]P. L. Tam, Y. Cao, U. Jelvestam, L. Nyborg, Corrosion properties of thermally annealed and co-sputtered nickel silicide thin films, Surf. Coat. Technol. , 206 (2011) 1160-1167. [9]R. Tomita, H. Kimura, M. Yasuda, K. Maeda, S. Ueno, T. Tomizawa, Y. Kunimune, H. Nakamura, M. Moritoki, H. Iwai, Formation of high resistivity phases of nickel silicide at small area, Microelectronics Reliability, 53 (2013) 659-664. [10]G. Tellouche, A. Derafa, K. Hoummada, D. Mangelinck, Reaction paths of Ni rich phases: Effect of Ni thickness, Vacuum, 141 (2017) 259-264. [11]W. Volksen, R. D. Miller, G. Dubois, Low dielectric constant materials, Chem. Rev. , 110 (2010) 56-110. [12]L. Chen, D. Ando, Y. Sutou, D. Gall, J. Koike, NiAl as a potential material for liner- and barrier-free interconnect in ultrasmall technology node, Appl. Phys. Lett. , 113 (2018) 183503. [13]D. Gall, Electron mean free path in elemental metals, J. Appl. Phys. , 119 (2016) 085101. [14]S. Dutta, S. Beyne, A. Gupta, S. Kundu, H. Bender, S. V. Elshocht, G. Jamieson, W. Vandervorst, J. Bommels, C. J. Wiiiison, Z. Tokei, C. J. Adelmann, Sub-100 nm2 cobalt Interconnects, IEEE Electron Device Lett. , 39 (2018) 731-734. [15]K. Barmak, X. Liu, A. Darbal, N. T. Nuher, D. Choi, T. Sun, A. P. Warren, K. R. Coffey, M. F. Toney, On twin density and resistivity of nanometric Cu thin films, J. Appl. Phys. , 120 (2016) 065106. [16]R. Saeki, T. Ohgai, Determination of cathode current efficiency for electrodeposition of ferromagnetic cobalt nanowire arrays in nanochannels with extremely large aspect ratio, Results Phys. , 15 (2019) 102658. [17]S. P. Murarka, Multilevel interconnections for ULSI and GSI era, Mater. Sci. Eng. , R19 (1997) 87-151. [18]O. V. Pedreira, K. Croes, A. Lesniewska, C. Wu, M. H. Veen, J. Messemaeker, K. Vandermissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V. V. Gonzalez, J. Bommels, Z. Tokei, Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects, IEEE, 6B (2018) 21-28. [19]F. Griggio, J. Palmer, F. Pan, N. Toledo, A. Schmitz, R. Kasim, G. Leatherman, J. Hicks, A. Madhavan, J. Shin, J. Steigerwald, A. Yeoh, C. Auth, Reliability of dual-damascene local interconnects feauring cobalt on 10 nm logic technology, IEEE, 6E (2018) 31-35. [20]E. Gomez, A. Labarta, A. Llorente, E. Valles, Electrodeposited cobalt + copper thin film on ITO Substrata, J. Electroanal. Chem. , 517 (2001) 63-68. [21]C. J. Liu, J. S. Chen, Influence of Zr additives on the microstructure and oxidation resistance of Cu(Zr) thin films, Mater. Res. Soc. , 20 (2005) 496-503. [22]J. S. Fang, Y. S. Liu, T. S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [23]L. C. K. Liua, T. Y. Tung, Fabrication of compositions of Cu-Cu2O crystal films by electrochemical deposition with potential pulse settings, Electrochim. Acta, 282 (2018) 395-401. [24]L. Caillard, J. Vignreon, M. Thiam, A. Lakhdari, F. Raynal, and A. Etcheberry, Investigation of Cu/TaN and Co/TaN Barrier-Seed Oxidation by Acidic and Alkaline Copper Electroplating Chemistry for Damascene Applications, J. Electrochem. Soc. , 165 (2018) D439-D443. [25]K. Venkatramam, R. Gusley, A. Lesak, and R. Akolkar, Electrochemistry-enabled atomic layer deposition of copper: Investigation of the deposit growth rate roughness, J. Vac. Sci. Technol. , A37 (2019) 020901. [26]J. S. Fang, T. F. Sie, Y. L. Cheng, G. S. Chen, A new alternative Electrochemical process for a pre-deposited UPD-Mn mediated the growth of Cu(Mn) film by controlling the time during the Cu-SLRR, Coatings, 10 (2020) 1-13. [27]W. Volksen, R. D. Miller, G. Dubois, Low Dielectric Constant Materials, Chem. Rev. , 110 (2010) 56-110. [28]J. C. Chuang, S. L. Tu, M. C. Chen, Sputter-deposited Mo and reactively sputter-deposited Mo-N films as barrier layer against Cu diffusion, Thin Solid Films, 346 (1999) 299-306. [29]Y. Liu, S. Song, D. Mac, H. Ling, M. Li, Diffusion barrier performance of reactively sputtered Ta-W-N between Cu and Si, Microelectron. Eng. , 75 (2004) 309-315. [30]Y. Wang, B. H. Tang, F. Y. Li, The properties of self-formed diffusion barrier layer in Cu(Cr) alloy, Vacuum, 126 (2016) 51-54. [31]M. Wu, S. Yu, Y. Sun, L. Ge, Highly performance of flexible transparent conductive Cu-based ZnO multilayer thin films via BS barrier layer, Ceram. Int. , 44 (2018) 14318-14322. [32]Y. B. Ou, T. L. Yang, W. C. Wu, B. T. Chen, K. Y. Lee H. L. Huang, P. Pang, E. Chen, K. C. Liu, M. Liao, H. Ku, Study of interface micro-voids between sputter Cu & plating Cu : the role of photoresist, IEEE, 114 (2018) 735-740. [33]S. Esmaeili, K. Lilienthal, N. Nagy, L. Gerlich, R. Krause, B. Uklig, Co-MOCVD processed seed layer for through silicon via copper metallization, Microelectron. Eng. , 211 (2019) 55-59. [34]Y. Oh, E. J. Kim, Y. Kim, K. Cuoi, W. B. Han, H. S. Kim, C. S. Yoon, Adhesion of sputter-deposited Cu/Ti film on plasma- treated polymer substrate, Thin Solid Films, 600 (2016) 90-97. [35]J. Weichart, J. Weichart, A. Erhart, K. Viehweger, Preconditioning Technologies for sputtered seed layers in FOPLP, IEEE, 282 (2019) 1833-1842. [36]M. Wislicenus, R. Liske, L. Gerlich, B. Vasilev, A. Preusse, Cobalt advanced barrier metallization: A resistivity composition analysis, Microelectron. Eng. , 137 (2015) 11-15. [37]M. Hosseini, D. Ando, Y. Sutou, J. Koike, Co and CoTix for contact plug and barrier layer in integrated circuits, Microelectron. Eng. , 189 (2018) 78-84. [38]W. Kozlowski, J. Balcerski, W. Szmaja, I. Piwonski, D. Batory, E. Miekos, M. Cichomski, Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates, J. Magn. Magn. Mater. , 426 (2017) 107-113. [39]S. M. Thalluri, B. Wei, K. Welter, R. Thomas, V. Smirnov, L. Qiao, Z. Wang, F. Finger, L. Liu, Inverted pyramid textured p-silicon covered with Co2P as an efficient and stable solar hydrogen evolution photocathode, Am. Chem. Soc. , 4 (2019) 1755-1762. [40]D. Benetti, R. Nechache, H. Pepin, J. Macleod, F. Rosei, R. Nouar, A. Sarkissian, Thin film coating and method of fabrication thereof, Patent Application Publication, 15 (2019) 177834. [41]C. Yang, B. Jiang, Z. Liu, J. Hao, L. Feng, Structure and properties of Ti films deposited by DC magnetron sputtering, pulsed DC magnetron sputtering and cathodic arc evaporation, Surf. Coat. Technol. , 304 (2016) 51-56. [42]L. Lina, Reactive Sputter deposition of functional thin films, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 945 (2012) 175666. [43]A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, John Wiley & Sons, (2001). [44]F. Brusciotti, P. Duby, Cyclic voltammetry study of arsenic in acidic solutions, Electrochim. Acta, 52 (2007) 6644-6649. [45]J. Zhang, M. An, L. Chang, Study of the electrochemical deposition of Sn-Ag-Cu alloy by cyclic voltammetry and chronoamperometry, Electrochim. Acta, 54 (2009) 2883-2889. [46]T. Hezard, K. Fajerwerg, D. Evrard, V. Colliere, P. Behra, P. Gros, Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis, J. Electroanal. Chem. , 664 (2012) 46-52. [47]P. Allongue, L. Cagnon, C. Gomes, A Gundel, V. Costa, Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM, Surf. Sci. , 557 (2004) 41-56. [48]T. M. Manhabosco, G. Englert, I. L. Muller, Characterization of cobalt thin films electrodeposited on to silicon with two different resistivities, Surf. Coat. Technol. , 200 (2006) 5203-5209. [49]Y. Yao, L. Zhang, X. Duan, J. Xu, W. Zhou, Y. Wen, Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes, Electrochim. Acta, 127 (2014) 86-94. [50]D. A. Jones, Localized surface plasticity during stress corrosion cracking, Corro. Sci. , 5 (1996) 356-362. [51]A. C. Frank, P. T. A. Sumogjo, Electrodeposition of cobalt from citrate containing baths, Electrochem. Acta, 132 (2014) 75-82. [52]Y. T. Hsieh, M. C. Lai, H. L. Huang, I. W. Sun, Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires, Electrochim. Acta, 117 (2014) 217-223. [53]S. Mahdavi, S. R. Allahkaram, Effect of bath composition and pulse electrodeposition condition on characteristics and microhandness of cobalt coatings, Trans. Nonferrous Met. Soc. China, 28 (2018) 2017-2027. [54]G. Panzeri, A. Accogli, E. Gibertini, S. Varotto, C. Rinaldi, L. Nobili, L. Magagnin, Electrodeposition of cobalt thin films and nanowires from ethylene glycol-based solution, Electrochem. Commun. , 103 (2019) 31-36. [55]B. Pan, Q. Zhang, Z. Liu, Y. Yang, Influence of butynediol and tetrabutylammonium bromide on the morphology and structure of electrodeposited cobalt in the presence of saccharin, Mater. Chem. Phys. , 228 (2019) 37-44. [56]P. G. Schiavi, P. Altimari, R. Zanoni, F. Pagnanelli, Morphology-controlled synthesis of cobalt nanostructures by facile electrodeposition: transition from hexagonal nanoplatelets to nanoflakes, Electrochim. Acta, 220 (2016) 405-416. [57]P. Altimari, P. C. Schiavi, A. Rubino, F. Pagnanelli, Electrodeposition of cobalt nanoparticles: An analysis of the mechanisms behind the deviation from three-dimensional diffusion-control, J. Electroanal. Chem. , 851 (2019) 113413. [58]M. L. Munford, L. Seligman, M. L. Sartorelli, E. Voltolini,L. F. O. Martins, Electrodeposition of magnetic thin films of cobalt silicon, J. Magn. Magn. Mater. , 226 (2001) 1613-1615. [59]X. Cao, L. Xu, Y. Shi, Y. Wang, X. Xue, Electrochemical behavior and electrodeposition cobalt from choline chloride-urea deep eutectic solvent, Electrochim. Acta 295 (2019) 550-557. [60]A. Foyet, A. Hauser, W. Schafer, Electrochemical deposition the cobalt nanostructure by double template and pulse current methods, Mater. Sci. Eng. C, 27 (2007) 100-104. [61]A. Sahari, A. Azizi, N. Fenineche, G. Schmerber, A. Dinia, Elcctrochemical study of cobalt nucleation mechanisms on different metallic substrate, Mater. Chem. Phys. , 108 (2008) 345-352. [62]A. Damian, F. Maroun, P. Allongue, Electrochemical growth and dissolution of Ni on bimetallic Pd/Au(111) substrates, Electeochem. Acta, 55 (2010) 8087-8099. [63]T. Z. Luo, L. Guo, R. C. Cammarata, Real-time intrinsic stress generation during Volmer-Weber growth of Co by electrochemical deposition, J. Cryst. Growth, 312 (2010) 1267-1270. [64]H. Harti, J. L. Bubendorff, A. Florentin, C. Pirri, J. Ebothe, Analysis of substrate effect on nucleation and growth mode of electrodepodsited cobalt on copper and graphite electrodes, J. Cryst. Growth, 319 (2011) 79-87. [65]J. Y. Zheng, Z. L. Quan, G. Song, C. W. Kim, H. G. Cha, T. W. Kim, W. Shin, K. J. Lee, M. H. Jung, Y. S. Kang, Vertical cobalt dendrite array films: electrochemical deposition and characterization, glucose oxidation and magnetic properties, J. Mater. Chem. , 22 (2012) 12296. [66]M. P. Pardave, J. A. Gonzalez, L. E. Botello, E. M. A. Estrada, M. T. R. Silva, J. Mostany, M. R. Romo, Influence of temperature on thermodynamics and kinetics of cobalt electrochemical nucleation and growth, Elcetrochim. Acta, 241 (2017) 162-169. [67]Y. Hu, T. Lyons, Q. Huang, Influence of furil dioxime on cobalt electrochemical nucleation and growth, J. Electrochem. Soc. , 167 (2020) 022509. [68]J. M. Fisher, L. E. A. Berlouis, B. N. Rospendowski, P. J. Hall, M. G. Astles, In situ ellipsometry studies of electrodeposited cadmium telluride films on cadmium mercury telluride, Semicond. Sci. Technol. , 8 (1993) 1459-1464. [69]H. Kockar, M. Alper, T. Sahin, O. Karaagac, Role of electrolyte pH on structural and magnetic properties of Co-Fe films, J. Magn. Magn. Mater. , 322 (2010) 1095-1097. [70]L. Tian, J. Xu, S. Xiao, The influence of pH and bath composition on properties of Ni-Co coatings synthesized by electrodeposition, Vacuum, 86 (2011) 27-33. [71]A. Franczak, A. Levesque, F. Bohr, J. Douglade, J. P. Chopart, Structural and morphological modifications of Co-thin films caused by magnetic field and Ph variation, Appl. Surf. Sci. , 258 (2012) 8683-8688. [72]R. A. J. Critelli, P. T. A. Sumodjo, M. Bertotti, R. M. Torresi, Influence of glycine on Co electrodeposition: IR spectroscopy and near-surface pH investigations, Electrochim. Atca, 260 (2018) 762-771. [73]I. Stankeviciene, A. Jaminiene, L. T. Tamasaiunaite, Z. Sukackiene, M Gedvilas, E. Norkus, Investigation of electroless deposition of cobalt films by EQCM in the presence of different amines, Mater. Sci. Eng. B, 241 (2019) 9-12. [74]J. Wu, F. Wafula, S. Branagan, H. Suzuki, and J. V. Eisden, Mechanism of Cobalt Bottom-Up Filling for Advanced Node Interconnect Metallization, J. Electrochem. Soc. , 166 (2019) D3136-D3141. [75]M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, The Critical Role of pH Gradient Formation in Driving Superconformal Cobalt Deposition, J. Electrochem. Soc. , 166 (2019) D3167-D3174. [76]D. Wu, D. J. Solanki, A. Joi, Y. Dordi, N. Dole, D. Litvnov, and S. R. Brankovic, Pb Monolayer Mediated Thin Film Growth of Cu and Co: Exploring Different Concepts, J. Electrochem. Soc. , 166 (2019) D3013-3021. [77]J. T. Matsushima, F. Trivinho-Strixino, E. C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance, Electrochim. Acta, 51 (2006)1960-1996. [78]R. Saravanakumar, P .Pirabaharan, L. Rajendran, The theory of steady state current for chronoamperometric and cyclic voltammetry on rotation disk electrodes for Ec’ and ECE’ reactions, Electrochim. Acta, 313 (2019) 441-456. [79]J. Seo, S. Sankarasubramanian, N. Singh, F. Mizuno, K. Takechi, J. Prakash, Effect of cathode porosity on the litjium-air oxygen reduction reaction – a rotation ring-disk electrode investigation, Electrochim. Acta, 248 (2017) 570-577. [80]H. G. Schmitt, M. Bakalli, Flow assisted corrosion, Shreir’s Corrosion, 2 (2010) 954-987. [81]J. E. Baur, Diffusion Coefficients, Handbook of Electrochemistry, 19 (2007) 829-848. [82]T. Maruyama, T. Nakai, Cobalt thin films prepared by chemical vapor deposition from cobaltous acetate, Appl. Phys. Lett. , 59 (1991) 1443. [83]A. R. Londergan, G. Nuesca, C. Goldberg, G. Peterson, A. E. Kaloyeros, B. Arkles, J. J. Sullivan, Intermediated epitaxy of cobalt silicide on silicon (100) from loe temperature chemical vapor deposition of cobalt, J. Electrochem. Soc. , 148 (2001) C21-C27. [84]B. S. Lim, A. Rahtu, R. G. Gordon, Atomic layer deposition transition metal, Nat. Mater. , 2 (2003) 749-754. [85]H. Shimizu, K. Sakoda, T. Momose, M. Koshi, Y. Shimogaki, Hot-wire-assisted atomic layer deposition oh high quality cobalt film using cobaltocene : elementary reaction analysis on NH x radical formation, J. Vac. Sci. Technol. , A30 (2012) 01A144. [86]S. L. Cheng, T. L. Hsu, T. Lee, S. W. Lee, J. C. Hu, L. T. Chen, Characterization and kinetic of electroless deposition of pure cobalt thin films on silicon substrate, Appl. Surf. Sci. , 264 (2013) 732-736. [87]K. Venkatraman, Y. Dordi, R. Akolkar, Electrochemical atomic layer deposition of cobalt enabled by the surface-limited redox replacement of underpotentially, J. Electrochem. Soc. , 164 (2017) D104-D109. [88]S. Jung, D. K. Nandi, S. Yeo, H. Kim, Y. Jang, J. S. Bae, T. E. Hong, S. H. Kim, Phase-controlled growth of cobalt oxide thin films by atomic layer deposition, Surf. Coat. Technol. 337 (2018) 404-410. [89]T. Thuening, J. Walker, H. Adams, O. Furlong, W. T. Tysoe, Kinetics of low-temperature CO oxidation on Au(111), Surf. Sci. , 648 (2016) 236-241. [90]M. R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, A. Kahoul, Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium, Mater. Chem. Phys. , 122 (2010) 449-453. [91]A. Subramanian, C. Shunmuganathan, T. Vasudevan, V. S. Murlidharan, Amorphous Cobalt-Boron alloy electrodeposition and dissolution, Trans IMF, 79 (2001) 119-122. [92]Y. Sverdlov, V. Bogush, H. Einati, Y. S. Diamand, Electrochemical study of electroless deposition of Co(W, B) alloys, J. Electrochem. Soc. , 152 (2005) C631-C638. [93]Y. N. Bekish, S. S. Grabchilov, L. S. Tsybulskaya, V. A. Kukareko, and S. S. Perevoznikov, Electroplated cobalt-boron alloys: formation and structure features, Protection of Metal and Physical Chemistry of Surfaces, 49 (2013) 319-324. [94]U. Admon, A. Baror, and D. Treves, Microstructure of cobalt and cobaltphosphorous, thin films, J. Appl. Phys. , 44 (1973) 1662553. [95]K. Huller, M. Sydow, G. Dietz, Magnetic anisotropy, magnetostriction and intermediate order in Co-P alloys, J. Magn. Magn. Mater. , 53 (1985) 269-274. [96]C. W. Chiu, I. W. Sun, P. Y. Chen, Electrodeposition and characterization of CoP compounds produced from the hydrophilic room-temperature ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide, J. Electrochem. Soc. , 164 (2017) H5018-H5025. [97]Y. H. Su, T. C. Kuo, W. H. Lee, Y. S. Wang, C. C. Hung, W. H. Tseng, K. H. Wei, Y. L. Wang, Effect of tungsten incorporation in cobalt tungsten alloys as seedless diffusion barrier materials, Microelectron. Eng. , 171 (2017) 25-30. [98]J. G. Torres, E. Valles, E. Gomez, Giant magnetoresistance in electrodeposited Co-Ag granular films, Mater. Lett. , 65 (2011) 1865-1867. [99]Y. B. Cho, S. Moon, C. Lee, Y. Lee, One-pot electrodeposition of cobalt fiower-decorated silver nanotrees for oxygen reduction reaction, Appl. Surf. Sci. , 394 (2017) 267-274. [100]K. Z. Rozman, J. Kovac, P. J. McGuiness, Z. Samardzija, Microstructural compositional and magnetic characterization of electrodeposited and annealed Co-Pt-based thin films, Thin Solid Film, 518 (2010) 1751-1755. [101]Q. F. Zhou, L. Y. Lu, L. N. Yu, X. G. Xu, Y. Jiang, Multifunctional Co-Mo films fabricated by electrochemical deposition, Electrochem. Acta, 106 (2013) 258-263. [102]L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating, Appl. Surf. Sci. , 252 (2006) 3591-3599. [103]L. D. Rafailovic, H. P. Karnthaler, T. Trisovic, D. M. Minic, Microstructure and mechanical properties of disperse Ni-Co alloys electrodeposited on Cu substrates, Mater. Chem. Phys. , 120 (2010) 409-416. [104]B. Bahadormanesh, A. Dolati, M. R. Ahmadi, Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings, J. Alloys Compd. , 509 (2011) 9406-9412. [105]L. Tian, J. Xu, C. Qiang, The electrodeposition behaviors and magnetic properties of Ni-Co films, Appl. Surf. Sci. , 257 (2011) 4689-4694. [106]C. Lupi, A. DellEra, M. Pasquali, P. Imperatori, Composition, morphology, structural aspects and electrochemical properties of Ni-Co alloy coating, Surf. Coat. Technol. , 205 (2011) 5394-5399. [107]A. Karpuz, H. Kockar, M. Alper, O. Karaagac, M. Haciismailoglu, Electrodeposited Ni-Co films from electrolytes with different Co contents, Appl. Surf. Sci. , 258 (2012) 4005-4010. [108]F. Z. Bouzit, A. Nemancha, H. Moumeni, J. L. Rehspringer, Morphology and Rietveld analysis of nanostructured Co-Ni electrodeposited thin films obtained at current densities, Surf. Coat. Technol. , 315 (2017) 172-180. [109]A. K. Chaudhari, V. B. Singh, A review of fundamential aspects, characterization amd applications of electrodeposition nanocrystalline iron group metals, Ni-Fe alloy and oxide ceramics reinforced nanocomposite coating, J. Alloys compd. , 751 (2018) 194-214. [110]M. A. Raj, S. Arumainathan, Comparative study of hydrogen evolution behavior of Nickel Cobalt and Nickel Cobalt Magnesium alloy film prepared by pulsed electrodeposition, Vacuum, 160 (2019) 461-466. [111]C. D. Lokhande, S. S Kulkarni, R. S. Mane, K. C. Nandi, S. H. Han , Structural and magnetic properties of single-step electrochemically deposited nanocrystalline cobalt ferrite thin films, Current Appl. Phys. , 8 (2008) 612-615. [112]Y. Chen, Q. P. Wang, C. Cai, Y. N. Yuan, F. H. Cao, Z. Zhang, J. Q. Zhang, Electrodeposition and characterization of nanocrystalline CoNiFe films, Thin Solid Films, 520 (2012) 3553-3557. [113]X. Yang, J. Q. Wei, X. H. Li, L. Q. Gong, T. Wang, F. S. Li, Thickness dependence of microwave magnetic properties in electrodeposited Fe-Co soft magnetic films with in-plane anisotropy, Physic B 407 (2012) 555-559. [114]Y. Zhang, D. G. Ivey, Electrodeposition of nanocrystalline CoFe soft magnetic thin films from citrate-stabilized baths, Mater. Chem. Phys. , 204 (2018) 171-178. [115]E. Vernickaite, N. Tsyntsaru, K. Sobczak, H. Cesiulis, Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium, Electrochim. Acta, 318 (2019) 597-606. [116]C. Liu, F. Su, J. Liang, Producing cobalt-graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance, Appl. Surf. Sci. , 351 (2015) 889-896. [117]N. M. Pereira, O. Brincoveanu, A. G. Pantazi, C. M. Pereira, J. P. Araujo, A. F. Silva, M. Enachescu, L. Anicai, Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids, Surf. Coat. Technol. , 324 (2017) 451-462. [118]A. M. Kwiecinska, D. Kutyla, K. K. Siedlecka, K. Skibnska, P. Zabinski, R. Kowalik, Electrochemical analysis of co-deposition cobalt and selenium, J. Electroanal. Chem. , 848 (2019) 113278. [119]G. Bulai, V. Trandafir, S. A. Irimiciuc, L. Ursu, C. Focsa, S. Gurlui, Influence of rare earth addition in cobalt ferrite thin films obtained by pulsed laser deposition, Ceram. Int. , 45 (2019) 20165-20171. [120]C. S. Fadley, X-ray photoelectron spectroscopy: progress and perspectives, J. Electron Spectros. Relat. Phenomena, 178-179 (2012) 2-32. [121]F. Cubadda, Chapter 19 – Inductively coupled plasma mass spectrometry, Food Toxicants Analysis, 19 (2007) 697-751. [122]M. K. Rahman, F. Nemouchi, T. Chevolleau, P. Gergaud, K. Yckache, Ni and Ti silicide oxidation for CMOS applications investigated by XRD, XPS, and FPP, Mater. Sci. Semicond. Process, 71 (2017) 470-476. [123]A. D. Luca, A. Portavoce, M. Texier, N. Burle, D. Mangelinck , G. Isella, First stage of Ni reaction with the Si(Ge) Alloy, J. Alloys Compd. , 695 (2017) 2799-2811. [124]D. Hamulic, I. Milosev, D. L. Hecht, The effect the deposition conditions on structure, composition and morphology of electrodeposited cobalt materials, Thin Solid Films, 667 (2018) 11-20. [125]S. M. Youssry, I. S. E. Hallag, R. Kumar, G. Kawamura, A. Matsuda, M. N. E. Nahass, Synthesis of mesoporous Co(OH)2 nanostructure film via electrochemical deposition using lyotropic crystal template as improved electrode materials for supercapacitors application, J. Electroanal. Chem. , 857 (2020) 113728. [126]D. Grujicic, B. Pesic, Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammomium sulfate solutions, Electrochim. Acta, 49 (2004) 4719-4732. [127]S. S. Zumdahl, S. A. Zumdahl, H. F. Hus, General Chemical, 8th Edition (2015). [128]M. Boubatra, A. Azizi, G. Schmerber, The influence of pH value electrolyte on the electrochemical deposition and properties of nickel thin films, Ionics, 18 (2012) 425-432. [129]M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, J. D. Reid, The critical role of pH gradient formation in driving superconformal cobalt deposition, J. Electrochem. Soc. , 166 (2019) D3167-D3174. [130]K. Ignatova, Y. Marcheva, Kinetics of electrodeposition of NiP, CoP and NiCoP coatings depending on sodium hypophosphite concentration, J. Chem. Technol. Metall. , 53 (2018) 549-555. [131]S. Bilgic, A. A. Aksut, Effect of acids on corrosion of cobalt in H2SO4, British Corrosion Journal, 28 (1993) 59-62. [132]S. B. Pawlowska, K. Mech, R. Kowalik, P. Zabinski, Analysis of electrodeposition parameters influence on cobalt deposit roughness, Appl. Surf. Sci. , 388 (2016) 805-808. [133]P. Patnaik, S. K. Padhy, B. C. Tripathy, Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide, Trans. Nonferrous Met. Soc. China, 25 (2015) 2047-2053. [134]Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries, J. Am. Chem. Soc. , 10 (2018) 11434. [135]M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L W. M. Lay, A. R. Gerson, R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. , 257 (2011) 2717-2730. [136]Y. Li, Z. Mao, Q. Wang, D. Li, R. Wang, B. He, Y. Gong, H. Wang, Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting, Chem. Eng. J. , 390 (2020) 124556. [137]A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons, Inc. (2001). [138]C. Du, Q. Tan, G. Yin, J. Zhang, Rotation disk electrode method, Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, 5 (2014) 171-198. [139]H. Jung, N. V. Myung, Electrodeposition of antimony telluride thin films from acidic nitrate- tartrate baths, Electrochim. Acta, 56 (2011) 5611-5615. [140]J. D. Lee, T. H. An, H. G. Noh, S. G. Kim, Y. R. Choi, Growth Kinetics and properties of thin cobalt films electrodeposited on n-Si(100), Jpn. J. Appl. Phys. , 49 (2010) 085802. [141]D. Spoddig, R. Meckenstock, J. P. Bucher, J. Pelzl, Studies of ferrmagnetic resonance line width during electrochemical deposition of Co films on Au(111), J. Magn. Magn. Mater. , 286 (2005) 286-290. [142]Y. Chen, L. Wang, A. Pradel, M. Ribes, M. C. Record, A voltammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem. , 724 (2014) 55-61. [143]N. Tournerie, A. Engelhardt, F. Maroun, P. Allongue, Probing the electrochemical interface with in situ magnetic characterizations: A case study of Co/Au(111) layers, Surf. Sci. , 631 (2015) 88-95. [144]F. Pagnanelli, P. Alyimari, M. Bellagamba, G. Granata, E. Moscardini, P. G. Schiavi, L. Toro, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology, Electrochim. Acta, 155 (2015) 228-235. [145]W. Kozlowski, I. Piwonski, W. Szmaja, M. Zielinski, Quantitative study of the effect of current density on the morphological and magnetic domain structures of electrodeposited nanocrystalline cobalt films, J. Electroanal. Chem. , 769 (2016) 42-47. [146]A. Sahari, A. Azizi, N. Fenineche, G. Schmerber, A. Dinia, Nucleation and surface morphology of cobalt films electrodeposited on Pt/Si substrate, Surf. Rev. Lett. , 12 (2005) 391-396. [147]Y. D. Yu, M. G. Li, G. Y. Wei, H. L. Ge, Effects of pH values on electroless deposition of CoP films, Surf. Eng. , 29 (2013) 767-771.
|