|
[1]奚廷斐,2017,” 生物醫用材料產業現狀及其發展趨勢”,中國醫療器械信息雜誌 https://posts.careerengine.us/p/599cd37d831bde10b8e51206 [2]賴岳炫,2021,” 醫療器材產業趨勢:創新創業之機會與挑戰” https://taccplus.com/technews1018/ [3]李爾芳、林怡欣、徐勤禎、郭大維、張慈映、劉千綺、劉家豪,2021,”醫療器材產業年鑑”,工研院產科國際所 [4]葉席吟,2015,”生醫材料領域之國際專利趨勢與技術發展分析”,國家實驗研究院 [5]宋信文、陳松青,2003,“生醫材料簡介”,生物產業技術概論 http://www.plas2006.com/uploadfile/topicfile/2007615165921.pdf [6]M. S. Safavi, F. C. Walsh, M. A. Surmeneva, R. A. Surmenev, and J. Khalil-Allafi, Electrodeposited hydroxyapatite based biocoatings:Recent progress and future challenges, Coatings 11 (2021) 1-62. [7]M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable materials and metallicimplants - a review, Journal of Functional Biomaterials 8 (2017) 1-15. [8]A. M. Pobloth, M. J. Mersiowsky, L. Kliemt, H. Schell, A. Dienelt, B. M. Pfitzner, R. Burgkart, R. Detsch, D. Wulsten, A. R. Boccaccini, and G. N. Duda, Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration, Scientific Reports 9 (2019) 1-16. [9]L. Wilhelm, R. Zippel, T. von Woedtke, H. Kenk, A. Hoene, M. Patrzyk, and M. Schlosser, Immune response against polyester implants is influenced by the coating substances, Journal of Biomedical Materials Research Part A 83A (2007) 104-113. [10]C. Du, F. Z. Cui, Q. L. Feng, X. D. Zhu, and K. de Groot, Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity, Journal of Biomedical Materials Research 42 (1998) 540-548. [11]M. B. Guglielmotti, D. G. Olmedo, and R. L. Cabrini, Research on implants and osseointegration, Periodontol 2000 79 (2019) 178-189. [12]O. Bazaka, K. Bazaka, P. Kingshott, R. J. Crawford, and E. P. Ivanova, Chapter 1. Metallic Implants for Biomedical Applications , The Chemistry of Inorganic Biomaterials (2021) 1-98. [13]D. Gospodinov, N. Ferdinandov, and S. Dimitrov, Classification, properties and application of titanium and its alloys, Proceedings of University of Ruse 55 (2016) 27-32. [14]T. R. Vijayaram, M. P. Natarajan, M. Ramarao, and D. Ananthapadmanaban, Titanium and titanium alloys : Advanced materials for engineering industries, Compliance Engineering Journal 12 (2021) 116-127. [15]G. B. Kauffman, and I. Mayo, The story of Nitinol:The serendipitous discovery of the memory metal and its applications, The Chemical Educator 2 (1996) 1-21. [16]劉家菁,2020,針對含有鎳鈦合金醫療器材相關非臨床評估之技術考量,當代醫藥法規月刊Vol.116 [17]https://www.comsol.com/blogs/the-elephants-of-materials-science-smas-never-forget-their-shape/ [18]https://www.skyfilabs.com/project-ideas/shape-memory-effect-intelligent-alloys [19]K. de Groot, Medical applications of calcium phosphate bioceramics, The Centennial Memorial Issue of The Ceramic Society of Japan 99 (1991) 943-953. [20]汪士豪,2004,Ti-6Al-4V合金被覆生醫用磷酸鹽, 國立高雄應用科技大學機械與精密工程研究所 [21]N. N. C. Isa, Y. Mohd, and N. Yury, Electrochemical deposition and characterization of hydroxyapatite (HA) on titanium substrate , APCBEE Procedia 3 (2012) 46-52. [22]I. A. Karampas , and C. G. Kontoyannis, Characterization of calcium phosphates mixtures, Vibrational Spectroscopy 64 (2013) 126-133. [23]Y. Luo, J. Zhu, Y. Ma, H. Zhang, Dry coating, a novel coating technology for solid pharmaceutical dosage forms, International Journal of Pharmaceutics 358 (2008) 16-22. [24]B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, On coating techniques for surface protection : a review, J. Manuf. Mater. Process. 3 (2019) 1-22. [25]X. J. Zhang, D. Y. Lin, X. H. Yan, and X. X. Wang, Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution, Journal of Crystal Growth 336 (2011) 60-66. [26]D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma, and J. Zhao, HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy, Surface & Coatings Technology 301 (2016) 6-12. [27]R. Schmidt, V. Hoffmann, A. Helth, P. F. Gostin, M. Calin, J. Eckert, and Annett Gebert, Electrochemical deposition of hydroxyapatite on beta-Ti-40Nb, Surface & Coatings Technology 294 (2016) 186-193. [28]R. Chakraborty, S. Sengupta, P. Saha, K. Das, and S. Das, Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition, Materials Science and Engineering C 69 (2016) 875-883. [29]B. Priyadarshini, M. Rama, and U. Vijayalakshmi, Bioactive coating as a surface modification technique for biocompatible metallic implants : a review, Journal of Asian Ceramic Societies 7 (2019) 397-406. [30]https://en.wikipedia.org/wiki/Biocompatibility [31]Y. Su, I. Cockerill, Y. Zheng , L. Tang, Y. X. Qin, and D. Zhu, Biofunctionalization of metallic implants by calcium phosphate coatings, Bioactive Materials 4 (2019) 196-206. [32]F. Marashi-Najafi, J. Khalil-Allafi, and M. R. Etminanfar, Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy, Materials Science and Engineering C 76 (2017) 278-286. [33]C. Eriksson, H. Nygren, and K. Ohlson, Implantation of hydrophilic and hydrophobic titanium discs in rat tibia : cellular reactions on the surfaces during the first 3 weeks in bone, Biomaterials 25 (2004) 4759-4766. [34]A. Mehrvarz, Y. Ghazanfar-Ahari, J. Khalil-Allafi, S. Mahdavi, and M. Etminanfar, The microstructural features and corrosion behavior of Hydroxyapatite / ZnO nanocomposite electrodeposit on NiTi alloy : Effect of current density, Ceramics International 48 (2022) 2191-2202. [35]T. Mokabber, L. Q. Lu, P. van Rijn, A. I. Vakis, and Y. T. Pei, Crystal growth mechanism of calcium phosphate coatings on titanium by electrochemical deposition, Surface & Coatings Technology 334 (2018) 526-535. [36]C. M. Cotrut, A. Vladescu, M. Dinu, and D. M. Vranceanu, Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition, Ceramics International 44 (2018) 669-677. [37]P. M. S. Tohidi, M. S. Safavi, M. Etminanfar, and J. Khalil-Allafi, Pulsed electrodeposition of compact, corrosion resistant, and bioactive HAp coatings by application of optimized magnetic field, Materials Chemistry and Physics 254 (2020) 1-9. [38]K. Lee, and H. C. Choe, Effects of electrolyte concentration on formation of calcium phosphate films on Ti-6Al-4V by electrochemical deposition, Journal of Nanoscience and Nanotechnology 17 (2017) 2743-2746. [39]N. Eliaz, S. Shmueli, I. Shur, D. Benayahu, D. Aronov, and G. Rosenman, The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia 5 (2009) 3178-3191. [40]A. O. Lobo, J. Otubo, J. T. Matsushima, and E. J. Corat, Rapid obtaining of nano-hydroxyapatite bioactive films on NiTi shape memory alloy by electrodeposition process, Journal of Materials Engineering and Performance 20 (2011) 793-797. [41]N. N. C. Isa, Y. Mohd, and N. Yury, Electrochemical deposition and characterization of hydroxyapatite (HAp) on titanium substrate, APCBEE Procedia 3 ( 2012 ) 46-52. [42]D. Qiu, A. Wang, and Y. Yin, Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition, Applied Surface Science 257 (2010) 1774-1778. [43]P. L. Bonora, F. Deflorian, and L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochimica Acta 41 (1996) 1073-1082. [44]J. R. Macdonald, Impedance spectroscopy, Annals of Biomedical Engineering 20 (1992) 289-305. [45]A. O. Lobo, F. R. Marciano, I. Regiani, J. T. Matsushima, S. C. Ramos, and E. J. Corat, Influence of temperature and time for direct hydroxyapatite electrodeposition on superhydrophilic vertically aligned carbon nanotube films, Journal of J Nanomedicine & Nanotechnology 6 (2011) 1-6. [46]D. T. M. Thanh, P. T. Nam, N. T. Phuong, L. X. Que, N. V. Anh, T. Hoang, and T. D. Lam, Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel, Materials Science and Engineering C 33 (2013) 2037-2045. [47]J. Wang, Y. Chao, Q. Wan, Z. Zhu, and H. Yu, Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition, Acta Biomaterialia 5 (2009) 1798-1807. [48]D. Y. Lin, and X. X. Wang, Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution, Surface & Coatings Technology 204 (2010) 3205-3213. [49]S. O. R. Sheykholeslami, J. Khalil-Allafi, and L. Fathyunes, Preparation, characterization, and corrosion behavior of calcium phosphate coating electrodeposited on the modified nanoporous surface of NiTi alloy for biomedical applications, Metallurgical and Materials Transactions A 49A (2018) 5878-5887. [50]T. Kokubo, and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials 27 (2006) 2907-2915. [51]A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, Preparation and assessment of revised simulated body fluids, Journal of Biomedical Materials Research Part A 65A (2003) 188-195.
|