|
Chen, F., Lu, C., Wu, H. and Li, M., 2017, “A semantic similarity measure integrating multiple conceptual relationships for web service discovery”, Expert Systems with Applications, Vol. 67, pp. 19-31. Ding, L. Y., Zhong, B. T. Wu, S. and Luo, H. B., 2016, “Construction risk knowledge management in BIM using ontology and semantic web technology”, Safety Science, Vol. 87, pp. 202-213. Embriette, H., The importance of controlled ontology, available at https://riffyn.com/blog/the-importance-of-controlled-ontology, retrieved June 15, 2020. Exner, K., Smolka, E., Blüher, T. and Stark, R., 2019, “A method to design Smart Services based on information categorization of industrial use cases”, Procedia CIRP, Vol. 83, pp. 77-82. Farquhar, A., Fike, R. and Rice, J., 1997, “The Ontolingua Server: a tool for collaborative ontology construction”, International journal of human-computer studies, Vol. 46, no. 6, pp. 707-727. Goodfellow, I., Bengio, Y. and Courville, A., 2016, Deep learning, The MIT Press, Cambridge, Massachusetts. Gruber, T. R., 1993, “A translation approach to portable ontology specifications”, Knowledge acquisition, Vol. 5, no. 2, pp. 199-220. Hagedorn, T. J., Smith, B., Krishnamurty, S. and Grosse, I., 2019, “Interoperability of disparate engineering domain ontologies using basic formal ontology”, Journal of engineering design, Vol. 30, no. 10-12, pp. 625-654. Hendler, J. and Berners-Lee, T., 2001, “Publishing on the semantic web”, Nature (London), Vol. 410, no. 6832, pp. 1023-1024. Hildebrandt, C., Kocher, A., Kustner, C., Lopez-Enriquez, C., Muller, A.W., Caesar, B., Gundlach, C.S. and Fay, A., 2020, “Ontology Building for Cyber-Physical Systems: Application in the Manufacturing Domain”, IEEE transactions on automation science and engineering, Vol. 17, no. 3, pp. 1266-1282. Huang, C., Cai, H., Xu, L., Xu, B., Gu, Y. and Jiang, L., 2019, “Data-driven ontology generation and evolution towards intelligent service in manufacturing systems”, Future Generation Computer Systems, Vol. 101, pp. 197-207. Itread, 2019, ”知識圖譜學習與實踐(5)——Protégé使用入門”, available at https://www.itread01.com/content/1564401843.html, retrieved July 07, 2019. Keith, D. F., 2017, “A Brief History of Deep Learning”, available at:https://www.dataversity.net/brief-history-deep-learning/#, retrieved February 07, 2017. Khan, Z.M.A., Saeidlou, S. and Saadat, M., 2019, “Ontology-based decision tree 10odel for prediction in a manufacturing network”. Production & manufacturing research, Vol. 7, no. 1, pp. 335-349. Lee, K. B., Cheon, S. and Kim, C. O., 2017, “A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes”. IEEE Transactions on Semiconductor Manufacturing, Vol. 30, no. 2, pp. 135-142. Liu, D., Lai, X., Xiao, Z., Liu, D., Hu, X. and Zhang, P., 2020, " Fault diagnosis of rotating machinery based on convolutional neural network and singular value decomposition ", Shock and vibration, Vol. 2020, pp. 1-13. Mabkhot, M.M., Amri, S.K., Darmoul, S., Al-Samhan, A.M. and Elkosantini, S., 2020, “An ontology-based multi-criteria decision support system to reconfigure manufacturing systems”, IISE transactions, Vol. 52, no. 1, pp. 18-42. Qin, Y., Lu, W., Qi, Q., Liu, X., Huang, M., Scott, P. J. and Jiang, X., 2018, “Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification”, Knowledge-Based Systems, Vol. 141, pp. 129-147. Shen, Y., Li, Y., Zheng, H., Tang, B. and Yang, M., 2019, “Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware naïve bayes classifier”, BMC Bioinformatics, Vol. 20, no. 1, pp. 330-330. Untoro, M. C., Sarno, R. and Ariyani, N. F., 2019, “Reusability ontology in business processes with similarity matching”, Jurnal Informatika (Universitas Ahmad Dahlan), Vol. 12, no. 1, pp. 9-16. Uschold, M. and Gruninger, M., 1996, “Ontologies: principles, methods and applications”, Knowledge engineering review, Vol. 11, no. 2, pp. 93-136. Wang, Z., 2019, “Research on design method of intelligent service system in product processing under PSS concept”, Procedia CIRP, Vol. 83, pp. 705-709. Welty, C. and Guarino, N., 2001, “Supporting ontological analysis of taxonomic relationships”, Data & Knowledge Engineering, Vol. 39, no. 1, pp. 51-74. Zhang, F., Zhou, Z., Liu, Q. and Xu, W., 2017, “An intelligent service matching method for mechanical equipment condition monitoring using the fibre bragg grating sensor network”, Enterprise Information Systems, Vol. 11, no. 2, pp. 284-309. Zhang, Z., Cao, L., Chen, X., Tang, W., Xu, Z. and Meng, Y., 2020, “Representation learning of knowledge graphs with entity attributes”. IEEE Access, Vol. 8, pp. 7435-7441. Zhou, Q., Yan, P., Liu, H. and Xin, Y., 2019, “A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis”, Journal of intelligent manufacturing, Vol. 30, no. 4, pp. 1693-1715. Zhu, J., Lai, C. and Sun, Y., 2019, “Fault mechanism analysis for manufacturing system based on catastrophe model”, Mathematical problems in engineering, Vol. 2019, pp. 1-11. 王文君,2004,「初探 Ontology」,台灣大學建築與城鄉研究所,取自 http://myweb.ncku.edu.tw/~ftlin/course/CAAD/CourseInformation/document/Ontology.pdf,參考日期:2004/7/24。 方國定,1997,中醫診斷於老年長期照護應用之研究:以本體論為基礎研究,國立雲林科技大學資訊管理系暨研究所,行政院國家科學委員會專題研究計畫。 周秉誼,2018,「淺談Deep Learning原理及應用」,國立臺灣大學計資中心電子報(C&INC E-News),第0038期,取自http://www.cc.ntu.edu.tw/chinese/ epaper/ 0038/20160920_3805.html,參考日期:2018/5/30。
|