|
參考文獻 [1]Goyal, K., Kumar, P., & Verma, K. (2022). Food adulteration detection using artificial intelligence: A systematic review. Archives of Computational Methods in Engineering, 29(1), 397-426. [2]Winickoff, D. E., & Bushey, D. M. (2010). Science and power in global food regulation: The rise of the codex alimentarius. Science, Technology, & Human Values, 35(3), 356-381. [3]Trienekens, J., & Zuurbier, P. (2008). Quality and safety standards in the food industry, developments and challenges. International journal of production economics, 113(1), 107-122. [4]Savov, A. V., & Kouzmanov, G. B. (2009). Food quality and safety standards at a glance. Biotechnology & Biotechnological Equipment, 23(4), 1462-1468. [5]Peng, G. J., Chang, M. H., Fang, M., Liao, C. D., Tsai, C. F., Tseng, S. H., ... & Cheng, H. F. (2017). Incidents of major food adulteration in Taiwan between 2011 and 2015. Food Control, 72, 145-152. [6]Tian, F. (2017, June). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In 2017 International conference on service systems and service management (pp. 1-6). IEEE. [7]Bansal, S., Singh, A., Mangal, M., Mangal, A. K., & Kumar, S. (2017). Food adulteration: Sources, health risks, and detection methods. Critical reviews in food science and nutrition, 57(6), 1174-1189. [8]Cheng, J. H., Sun, D. W., Han, Z., & Zeng, X. A. (2014). Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review. Comprehensive Reviews in Food Science and Food Safety, 13(1), 52-61. [9]He, H. J., & Sun, D. W. (2015). Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence spectroscopy. Trends in food science & technology, 46(2), 199-210. [10]Hassoun, A., Sahar, A., Lakhal, L., & Aït-Kaddour, A. (2019). Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. Lwt, 103, 279-292. [11]Li, T. T., Jalbani, Y. M., Zhang, G. L., Zhao, Z. Y., Wang, Z. Y., Zhao, X. Y., & Chen, A. L. (2019). Detection of goat meat adulteration by real-time PCR based on a reference primer. Food Chemistry, 277, 554-557. [12]Griesche, C., & Baeumner, A. J. (2020). Biosensors to support sustainable agriculture and food safety. TrAC Trends in Analytical Chemistry, 128, 115906. [13]Orrillo, I., Cruz-Tirado, J. P., Cardenas, A., Oruna, M., Carnero, A., Barbin, D. F., & Siche, R. (2019). Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper. Food Control, 101, 45-52. [14]Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Heidarbeigi, K., & Momeny, M. (2021). Detection of fraud in ginger powder using an automatic sorting system based on image processing technique and deep learning. Computers in biology and medicine, 136, 104764. [15]Chakravartula, S. S. N., Moscetti, R., Bedini, G., Nardella, M., & Massantini, R. (2022). Use of convolutional neural network (CNN) combined with FT-NIR spectroscopy to predict food adulteration: A case study on coffee. Food Control, 135, 108816. [16]Pu, M., Li, X., Ma, X., Wang, Y., Zhao, Z., Wang, C., ... & Luo, X. (2015). Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 1(9), e1500396. [17]Haff, R. P., & Toyofuku, N. (2008). X-ray detection of defects and contaminants in the food industry. Sensing and Instrumentation for Food Quality and Safety, 2, 262-273. [18]Saxe, J., & Berlin, K. (2017). eXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file paths and registry keys. arXiv preprint arXiv:1702.08568. [19]Woertz, K., Tissen, C., Kleinebudde, P., & Breitkreutz, J. (2011). Taste sensing systems (electronic tongues) for pharmaceutical applications. International journal of pharmaceutics, 417(1-2), 256-271. [20]Baldwin, E. A., Bai, J., Plotto, A., & Dea, S. (2011). Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors, 11, 4744-4766. [21]Dargahi, J., & Najarian, S. (2005). Advances in tactile sensors design/manufacturing and its impact on robotics applications–a review. Industrial Robot: An International Journal, 32(3), 268-281. [22]Ribeiro, P., Cardoso, S., Bernardino, A., & Jamone, L. (2020, October). Fruit quality control by surface analysis using a bio-inspired soft tactile sensor. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8875-8881). IEEE. [23]Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends in Food Science & Technology, 105, 176-185. [24]Wang, J., Li, D., Ye, Y., Qiu, Y., Liu, J., Huang, L., ... & Chen, B. (2021). A fluorescent metal–organic framework for food real‐time visual monitoring. Advanced Materials, 33(15), 2008020. [25]Vasquez, J. A. T., Scapaticci, R., Turvani, G., Ricci, M., Farina, L., Litman, A., ... & Vipiana, F. (2020). Noninvasive inline food inspection via microwave imaging technology: An application example in the food industry. IEEE Antennas and Propagation Magazine, 62(5), 18-32. [26]Kim, C., Lee, K. K., Kang, M. S., Shin, D. M., Oh, J. W., Lee, C. S., & Han, D. W. (2022). Artificial olfactory sensor technology that mimics the olfactory mechanism: A comprehensive review. Biomaterials Research, 26(1), 1-13. [27]Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99, 1-10. [28]Wu, X., & Toko, K. (2022). Taste sensor with multiarray lipid/polymer membranes. TrAC Trends in Analytical Chemistry, 116874. [29]Fujimoto, H., Narita, Y., Iwai, K., Hanzawa, T., Kobayashi, T., Kakiuchi, M., ... & Toko, K. (2021). Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chemistry, 342, 128228. [30]Christopher, C. T., Fath Elbab, A. M., Osueke, C. O., Ikua, B. W., Sila, D. N., & Fouly, A. (2022). A piezoresistive dual-tip stiffness tactile sensor for mango ripeness assessment. Cogent Engineering, 9(1), 2030098. [31]Ribeiro, P., Cardoso, S., Bernardino, A., & Jamone, L. (2020, October). Fruit quality control by surface analysis using a bio-inspired soft tactile sensor. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8875-8881). IEEE. [32]Li, S., Simonian, A., & Chin, B. A. (2010). Sensors for agriculture and the food industry. The Electrochemical Society Interface, 19(4), 41. [33]Ma, J., Sun, D. W., Pu, H., Cheng, J. H., & Wei, Q. (2019). Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Annual review of food science and technology, 10, 197-220. [34]Saha, D., & Manickavasagan, A. (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Current Research in Food Science, 4, 28-44. [35]Roy, M., & Yadav, B. K. (2021). Electronic nose for detection of food adulteration: A review. Journal of Food Science and Technology, 1-13. [36]Gliszczyńska-Świgło, A., & Chmielewski, J. (2017). Electronic nose as a tool for monitoring the authenticity of food. A review. Food Analytical Methods, 10, 1800-1816. [37]Yuan, H., Chen, X., Shao, Y., Cheng, Y., Yang, Y., Zhang, M., ... & Wu, Z. (2019). Quality evaluation of green and dark tea grade using electronic nose and multivariate statistical analysis. Journal of food science, 84(12), 3411-3417. [38]Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. sensors, 9(7), 5099-5148. [39]Mahmoudi, E. (2009). Electronic nose technology and its applications. Sensors & Transducers, 107(8), 17. [40]Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Siadat, M., & Balasubramanian, S. (2009). Meat quality assessment by electronic nose (machine olfaction technology). Sensors, 9(8), 6058-6083. [41]O’Connell, M., Valdora, G., Peltzer, G., & Negri, R. M. (2001). A practical approach for fish freshness determinations using a portable electronic nose. Sensors and Actuators B: chemical, 80(2), 149-154. [42]Pardo, M., & Sberveglieri, G. (2002). Coffee analysis with an electronic nose. IEEE Transactions on Instrumentation and Measurement, 51(6), 1334-1339. [43]Dutta, R., Kashwan, K. R., Bhuyan, M., Hines, E. L., & Gardner, J. W. (2003). Electronic nose based tea quality standardization. Neural Networks, 16(5-6), 847-853. [44]Martı́, M. P., Busto, O., Guasch, J., & Boqué, R. (2005). Electronic noses in the quality control of alcoholic beverages. TrAC Trends in Analytical Chemistry, 24(1), 57-66. [45]Hong, X., Wang, J., & Hai, Z. (2012). Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sensors and Actuators B: Chemical, 161(1), 381-389. [46]GholamHosseini, H., Luo, D., Liu, H., & Xu, G. (2007, December). Intelligent processing of E-nose information for fish freshness assessment. In 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (pp. 173-177). IEEE. [47]Barea-Ramos, J. D., Cascos, G., Mesías, M., Lozano, J., & Martín-Vertedor, D. (2022). Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. Sensors, 22(22), 8654. [48]Lu, X., Wang, J., Lu, G., Lin, B., Chang, M., & He, W. (2019). Quality level identification of West Lake Longjing green tea using electronic nose. Sensors and Actuators B: Chemical, 301, 127056. [49]Viejo, C. G., Fuentes, S., Godbole, A., Widdicombe, B., & Unnithan, R. R. (2020). Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sensors and Actuators B: Chemical, 308, 127688. [50]Falasconi, M., Concina, I., Gobbi, E., Sberveglieri, V., Pulvirenti, A., & Sberveglieri, G. (2012). Electronic nose for microbiological quality control of food products. International Journal of Electrochemistry, 2012. [51]Röck, F., Barsan, N., & Weimar, U. (2008). Electronic nose: current status and future trends. Chemical reviews, 108(2), 705-725. [52]Mombaerts, P. (1999). Odorant receptor genes in humans. Current opinion in genetics & development, 9(3), 315-320. [53]Illy, A., & Viani, R. (Eds.). (2005). Espresso coffee: the science of quality. Academic Press. [54]Lee, C. H., Chen, I. T., Yang, H. C., & Chen, Y. J. (2022). An AI-powered Electronic Nose System with Fingerprint Extraction for Aroma Recognition of Coffee Beans. Micromachines, 13(8), 1313. [55]Rehm, J., Kanteres, F., & Lachenmeier, D. W. (2010). Unrecorded consumption, quality of alcohol and health consequences. Drug and alcohol review, 29(4), 426-436. [56]Budner, D., Bell, L., & Thompson-Witrick, K. (2023). The BooZi device’s effect on aroma compounds in distilled spirits. Journal of the South Carolina Academy of Science, 21(1), 5. [57]Jung, A., Jung, H., Auwärter, V., Pollak, S., Farr, A. M., Hecser, L., & Schiopu, A. (2010). Volatile congeners in alcoholic beverages: analysis and forensic significance. Rom. J. Leg. Med, 18(4), 265-270.
|