|
[1]B. K. Kim, M. Jang, J. S. Kim, K. Kang, D. E. Kim, and J. Kim, "Investigation of FBG Linear/Angεar Acceleration Sensor for Novel Type Inertial Measurement," IEEE Transactions on Industrial Electronics, pp. 1-9, 2022. [2]Y. F. X. W. G. C. N. L. M. X. Z. Z. F. R. o. S. P. C. M. o. F. B. G. S. C. B. o. R. E. Song, Sensors, vol. 22, no. 17. doi: 10.3390/s22176399 [3]Y. Zhang et al., "Magnetic Field and Temperature Dual-Parameter Sensor Based on Nonadiabatic Tapered Microfiber Cascaded With FBG," IEEE Access, vol. 10, pp. 15478-15486, 2022. [4]C. Karapanagiotis, K. Hicke, A. Wosniok, and K. Krebber, "Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach," Optics Express, vol. 30, no. 8, pp. 12484-12494, 2022/04/11 2022. [5]O. T. Y. H. S. M. R. H. A. U. S. A. A. T. K. A. V. B. L. K. A. V. S. A. A. C. F.-O. Morozov, Sensors, vol. 22, no. 13. doi: 10.3390/s22134827 [6]F. R. C. L. P. D. M. C. C. M. S. E. F. B. G. B. S. S. f. A. E. A. D. O. De Tommasi and A. Clinical, Biosensors, vol. 12, no. 8. doi: 10.3390/bios12080645 [7]A. M. A. U. A. H. A. M. Q. K. K. T. I. A. I. P. o. B. S. f. H. G. U. B. C. Butt and F. B. G. B. S. P. f. P. P. Measurements, Sensors, vol. 22, no. 8. doi: 10.3390/s22083085 [8]J. Li, C. Wang, Z. Mao, Y. Liu, Z. Wang, and H. Liu, "A Compact FBG-Based Triaxial Force Sensor With Parallel Helical Beams for Robotic-Assisted Surgery," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-9, 2022. [9]T. Sun et al., "Degradable Bioinspired Hypersensitive Strain Sensor with High Mechanical Strength Using a Basalt Fiber as a Reinforced Layer," ACS Applied Materials & Interfaces, 2022/09/08 2022. [10]C.-Y. Hong, Y.-F. Zhang, M.-X. Zhang, L. M. G. Leung, and L.-Q. Liu, "Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques," Sensors and Actuators A: Physical, vol. 244, pp. 184-197, 2016/06/15/ 2016. [11]M. F. X. S. Y. L. S. C. N. Z. F. R. o. T.-D. S. M. M. o. S. R. B. o. F. B. G. S. T. Liang, Sensors, vol. 22, no. 7. doi: 10.3390/s22072624 [12]H.-H. S. B. Z. C.-C. F. B. G. B. M. o. G. C. S. Zhu and Trends, Sensors, vol. 17, no. 3. doi: 10.3390/s17030452 [13]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied Physics Letters, vol. 32, no. 10, pp. 647-649, 2008. [14]L. Gardner, "The use of stainless steel in structures," Progress in Structural Engineering and Materials, https://doi.org/10.1002/pse.190 vol. 7, no. 2, pp. 45-55, 2005/04/01 2005. [15]Y. Guo, J. Kong, H. Liu, D. Hu, and L. Qin, "Design and Investigation of a Reusable Surface-Mounted Optical Fiber Bragg Grating Strain Sensor," IEEE Sensors Journal, vol. 16, no. 23, pp. 8456-8462, 2016. [16]H.-P. W. Y.-B. C. C. Z. H.-Y. J. H. Z. X.-M. X. X.-Y. D. R. o. C. R. S. B. S. t. I. A. B. Wang, Sensors, vol. 22, no. 17. doi: 10.3390/s22176377 [17]D. L. Presti et al., "The effect of infill pattern and density on the response of 3D-printed sensors based on FBG technology," IEEE Sensors Journal, pp. 1-1, 2022. [18]D.-S. Xu, Z.-Q. Su, B. Lalit, and Y. Qin, "A hybrid FBG-based load and vibration transducer with a 3D fused deposition modelling approach," Measurement Science and Technology, vol. 33, no. 6, p. 065106, 2022/03/16 2022. [19]C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature Materials, vol. 11, no. 9, pp. 795-801, 2012/09/01 2012. [20]Y.-J. Lee, H. Ahmed, and J.-R. Lee, "Filament-wound composite pressure vessel inspection based on rotational through-transmission laser εtrasonic propagation imaging," Composite Structures, vol. 236, p. 111871, 2020/03/15/ 2020. [21]W. Villamizar, M. Casales, J. Gonzalez-Rodriguez, and L. J. J. o. S. S. E. Martinez, "CO 2 corrosion inhibition by hydroxyethyl, aminoethyl, and amidoethyl imidazolines in water–oil mixtures," vol. 11, pp. 619-629, 2007. [22]C. B. Burson-Thomas and R. J. J. J. o. B.-a. T.-C. Wood, "Developments in erosion–corrosion over the past 10 years," vol. 3, pp. 1-9, 2017. [23]H. H. Pariser, N. R. Backeberg, O. C. M. Masson, and J. C. M. Bedder, "Changing nickel and chromium stainless steel markets - a review %J Journal of the Southern African Institute of Mining and Metallurgy," vol. 118, pp. 563-568, 2018. [24]S.-b. Oh, Y.-m. Cheong, D.-j. Kim, and K.-m. J. S. Kim, "On-Line Monitoring of pipe wall thinning by a high temperature εtrasonic waveguide system at the flow accelerated corrosion proof facility," vol. 19, no. 8, p. 1762, 2019. [25]U. Zscherpel, I. Einav, S. Infanzon, and J. Zirnhelt, "Radiographic evaluation of corrosion and deposits: IAEA co-ordinated research project on large diameter steel pipes," in Proceedings of 16th World Conference on Nondestructive Testing (WCNDT), Montreal, 2004: Citeseer. [26]S. Sönmez and H. J. E. S. Jahangiri, "Wall Thickness Measurement of Carbon Steel Pipes by Using Digital Radiography," vol. 12, no. 4, pp. 256-261, 2017. [27]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication," Applied physics letters, vol. 32, no. 10, pp. 647-649, 1978. [28]G. Meltz, W. Morey, and W. Glenn, "In-fiber Bragg Grating Tap," in Optical Fiber Communication Conference, 1990, p. TUG1: Optical Society of America. [29]Z. Liu, X. Gu, C. Wu, H. Ren, Z. Zhou, and S. Tang, "Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor," Construction and Building Materials, vol. 321, p. 126085, 2022/02/28/ 2022. [30]J. Kumar and D. Chack, "FBG based strain sensor with temperature compensation for structural health monitoring," in 2018 4th International Conference on Recent Advances in Information Technology (RAIT), 2018, pp. 1-4: IEEE. [31]Y. Guo, J. Kong, H. Liu, D. Hu, and L. J. I. S. J. Qin, "Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor," vol. 16, no. 23, pp. 8456-8462, 2016. [32]M. Liu, W. Wang, H. Song, S. Zhou, and W. J. S. Zhou, "A high sensitivity FBG strain sensor based on flexible hinge," vol. 19, no. 8, p. 1931, 2019. [33]P.-C. Wu, D.-Y. Tan, W.-B. Chen, N. Malik, and J.-H. Yin, "Novel fiber Bragg Grating-based strain gauges for monitoring dynamic responses of Celtis sinensis under typhoon conditions," Measurement, vol. 172, p. 108966, 2021/02/01/ 2021. [34]L. Groo, J. Nasser, D. J. Inman, and H. A. Sodano, "Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites," Composites Part B: Engineering, vol. 219, p. 108932, 2021/08/15/ 2021. [35]T. Shiratsuchi and T. Imai, "Development of fiber Bragg grating strain sensor with temperature compensation for measurement of cryogenic structures," Cryogenics, vol. 113, p. 103233, 2021/01/01/ 2021. [36]P. Zhu, X. Xie, X. Sun, and M. A. Soto, "Distributed modεar temperature-strain sensor based on optical fiber embedded in laminated composites," Composites Part B: Engineering, vol. 168, pp. 267-273, 2019/07/01/ 2019. [37]M. Liu, W. Wang, H. Song, S. Zhou, and W. Zhou, "A High Sensitivity FBG Strain Sensor Based on Flexible Hinge," (in eng), Sensors (Basel), vol. 19, no. 8, Apr 24 2019. [38]Y. Tian, B. Shirinzadeh, D. Zhang, and G. Alici, "Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipεation," Mechanical Systems and Signal Processing, vol. 23, no. 3, pp. 957-978, 2009/04/01/ 2009. [39]A. A. Dmitriev, S. V. Varzhel, K. V. Grebnev, and E. V. Anokhina, "Strain gauge based on n-pairs of chirped fiber Bragg gratings," Optical Fiber Technology, vol. 70, p. 102893, 2022/05/01/ 2022. [40]S. Fan, L. Ren, and J. Chen, "Investigation of fiber Bragg grating strain sensor in dynamic tests of small-scale dam model," Structural Control and Health Monitoring, https://doi.org/10.1002/stc.1745 vol. 22, no. 10, pp. 1282-1293, 2015/10/01 2015. [41]M. OKA, T. YAKUSHIJI, Y. TSUCHIDA, M. J. J. o. t. J. S. o. A. E. ENOKIZONO, and Mechanics, "Examination of the inductance method for non-destructive testing in structural metallic material by means of the pancake-type coil," vol. 21, no. 3, pp. 488-493, 2013. [42]J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. J. J. o. P. S. Chen, "High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors," vol. 433, p. 226692, 2019. [43]Z. Fang, K. Chin, R. Qu, and H. Cai, Fundamentals of optical fiber sensors. John Wiley & Sons, 2012. [44]T. L. Singal, Optical fiber communications: principles and applications. Cambridge University Press, 2016. [45]E. J. J. Snitzer, "Cylindrical dielectric waveguide modes," vol. 51, no. 5, pp. 491-498, 1961. [46]D. J. A. o. Gloge, "Weakly guiding fibers," vol. 10, no. 10, pp. 2252-2258, 1971. [47]J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985. [48]R. Gafsi and M. A. El-Sherif, "Analysis of induced-birefringence effects on fiber Bragg gratings," Optical fiber technology, vol. 6, no. 3, pp. 299-323, 2000. [49]T. Erdogan, "Fiber grating spectra," Journal of lightwave technology, vol. 15, no. 8, pp. 1277-1294, 1997. [50]R. Gafsi and M. A. El-Sherif, "Analysis of induced-birefringence effects on fiber Bragg gratings," in Optical Fiber Technology, 2000, vol. 6, no. 3, pp. 299-323. [51]J. M. Menendez and J. A. Guemes, "Bragg-grating-based mεtiaxial strain sensing: its application to residual strain measurement in composite laminates," in Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 2000, vol. 3986, pp. 271-281: International Society for Optics and Photonics. [52]J. Guemes and J. Menendez, "Response of Bragg grating fiber-optic sensors when embedded in composite laminates," Composites science and technology, vol. 62, no. 7-8, pp. 959-966, 2002. [53]W. W. Morey, G. Meltz, and W. H. Glenn, "Fiber optic bragg grating sensors," in Proceedings of SPIE - The International Society for Optical Engineering, 1990, vol. 1169, pp. 98-107. [54]Q. Xu and Y. Li, "Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier," Mechanism and Machine Theory, vol. 46, no. 2, pp. 183-200, 2011/02/01/ 2011. [55]N. Lobontiu and E. Garcia, "Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms," Computers & Structures, vol. 81, no. 32, pp. 2797-2810, 2003/12/01/ 2003. [56]H.-W. Ma, S.-M. Yao, L.-Q. Wang, and Z. Zhong, "Analysis of the displacement amplification ratio of bridge-type flexure hinge," Sensors and Actuators A: Physical, vol. 132, no. 2, pp. 730-736, 2006/11/20/ 2006. [57]H. Zhou and B. Henson, "Analysis of a diamond-shaped mechanical amplifier for a piezo actuator," The International Journal of Advanced Manufacturing Technology, vol. 32, no. 1, pp. 1-7, 2007/02/01 2007. [58]J. P. Brett and G. Ephrahim, "A smart material microamplification mechanism fabricated using LIGA," Smart Materials and Structures, vol. 7, no. 1, p. 105, 1998/02/01 1998. [59]N. Lobontiu, E. J. C. Garcia, and structures, "Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms," vol. 81, no. 32, pp. 2797-2810, 2003. [60]L. L. Howell, "Compliant Mechanisms," in 21st Century Kinematics, London, 2013, pp. 189-216: Springer London. [61]Y. Li and Q. Xu, "Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipεator," IEEE Transactions on Robotics, vol. 25, no. 3, pp. 645-657, 2009. [62]J. H. Kim, S. H. Kim, and Y. K. Kwak, "Development and optimization of 3-D bridge-type hinge mechanisms," Sensors and Actuators, A: Physical, Article vol. 116, no. 3, pp. 530-538, 2004. [63]Y. Li, S. Bi, and C. Zhao, "Analytical modeling and analysis of rhombus-type amplifier based on beam flexures," Mechanism and Machine Theory, vol. 139, pp. 195-211, 2019/09/01/ 2019. [64]S. Awtar, A. H. Slocum, and E. Sevincer, "Characteristics of Beam-Based Flexure Modεes," Journal of Mechanical Design, vol. 129, no. 6, pp. 625-639, 2006. [65]M. Ling, J. Cao, M. Zeng, J. Lin, and D. J. Inman, "Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms," Smart Materials and Structures, vol. 25, no. 7, p. 075022, 2016/06/10 2016. [66]K.-q. Qi, Y. Xiang, C. Fang, Y. Zhang, and C.-s. Yu, "Analysis of the displacement amplification ratio of bridge-type mechanism," Mechanism and Machine Theory, vol. 87, pp. 45-56, 2015/05/01/ 2015. [67]J. Chen, C. Zhang, M. Xu, Y. Zi, and X. Zhang, "Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model," Mechanical Systems and Signal Processing, vol. 50-51, pp. 580-593, 2015/01/01/ 2015. [68]M. Liu, W. Wang, H. Song, S. Zhou, and W. Zhou, "A High Sensitivity FBG Strain Sensor Based on Flexible Hinge," Sensors, vol. 19, no. 8. doi: 10.3390/s19081931 [69]Y. Yue, F. Gao, X. Zhao, and Q. Jeffrey Ge, "Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicεar parallel micro-manipεator," Mechanism and Machine Theory, vol. 45, no. 5, pp. 756-771, 2010/05/01/ 2010. [70]L.-J. Lai and Z.-N. Zhu, "Design, modeling and testing of a novel flexure-based displacement amplification mechanism," Sensors and Actuators A: Physical, vol. 266, pp. 122-129, 2017/10/15/ 2017. [71]J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, "High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors," Journal of Power Sources, vol. 433, p. 226692, 2019/09/01/ 2019.
|