|
[1]Sumayli, A. (2021). Recent trends on bioimplant materials: A review. Materials Today: Proceedings, 46, 2726-2731. [2]Qu, H., Fu, H., Han, Z., & Sun, Y. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC advances, 9(45), 26252-26262. [3]Eugene Lih, Chang Hun Kum, Wooram Park, So Young Chun, Youngjin Cho, Yoon Ki Joung, Kwang-Sook Park, Young Joon Hong, Dong June Ahn, Byung-Soo Kim, Tae Gyun Kwon, Myung Ho Jeong, Jeffrey A. Hubbell, & Dong Keun Han. (2018). Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly (lactide-co-glycolide) implants. ACS nano, 12(7), 6917-6925. [4]代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, & 于振涛. (2018). 生物医用可降解锌基合金的研究进展. 材料导报, 32(21), 3754-3759. [5]Patel, N. R., & Gohil, P. P. (2012). A review on biomaterials: scope, applications & human anatomy significance. International Journal of Emerging Technology and Advanced Engineering, 2(4), 91-101. [6]Kargozar, S., Ramakrishna, S., & Mozafari, M. (2019). Chemistry of biomaterials: Future prospects. Current Opinion in Biomedical Engineering, 10, 181-190. [7]Navarro, M., Michiardi, A., Castano, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. Journal of the royal society interface, 5(27), 1137-1158. [8]Jaganathan, S. K., Supriyanto, E., Murugesan, S., Balaji, A., & Asokan, M. K. (2014). Biomaterials in cardiovascular research: applications and clinical implications. BioMed research international, 2014. [9]Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43(2), 581-591 [10]Heimann, R. B. (2002). Materials science of crystalline bioceramics: a review of basic properties and applications. CMU J, 1(1), 23-46. [11]Ødegaard, K. S., Torgersen, J., & Elverum, C. W. (2020). Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. Metals, 10(12), 1677. [12]Park, J., & Lakes, R. S. (2007). Biomaterials: an introduction. Springer Science & Business Media. [13]Mahapatro, A. (2015). Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering: C, 55, 227-251. [14]Wilson, J. (2018). Metallic biomaterials: State of the art and new challenges. Fundamental Biomaterials: Metals, 1-33. [15]Sezer, N., Evis, Z., Kayhan, S. M., Tahmasebifar, A., & Koç, M. (2018). Review of magnesium-based biomaterials and their applications. Journal of magnesium and alloys, 6(1), 23-43. [16]Yang, J., Cui, F. Z., Lee, I. S., & Wang, X. (2010). Plasma surface modification of magnesium alloy for biomedical application. Surface and Coatings Technology, 205, S182-S187. [17]Bowen, P. K., Shearier, E. R., Zhao, S., Guillory, R. J., Zhao, F., Goldman, J., & Drelich, J. W. (2016). Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn‐Alloys. Advanced healthcare materials, 5(10), 1121-1140. [18]Pilliar, R. M. (2021). Metallic biomaterials. In Biomedical materials (pp. 24). Springer, Cham. [19]Hussein, M. A., Mohammed, A. S., & Al-Aqeeli, N. (2015). Wear characteristics of metallic biomaterials: a review. Materials, 8(5), 2749-2768. [20]Karthika Prasad, Olha Bazaka, Ming Chua , Madison Rochford, Liam Fedrick, Jordan Spoor, Richard Symes, Marcus Tieppo, Cameron Collins, Alex Cao, David Markwell, Kostya (Ken) Ostrikov, & Kateryna Bazaka. (2017). Metallic biomaterials: Current challenges and opportunities. Materials, 10(8), 884. [21]Eliaz, N. (2019). Corrosion of metallic biomaterials: a review. Materials, 12(3), 407. [22]Rao, S. H., Harini, B., Shadamarshan, R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International journal of biological macromolecules, 110, 88-96. [23]Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and scaffolds: a winning combination for tissue engineering. Frontiers in bioengineering and biotechnology, 3, 202. [24]Best, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319-1327. [25]Shekhawat, D., Singh, A., Banerjee, M. K., Singh, T., & Patnaik, A. (2021). Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceramics International, 47(3), 3013-3030. [26]Hench, L. L. (1991). Bioceramics: from concept to clinic. Journal of the american ceramic society, 74(7), 1487-1510. [27]Lööf, J., Svahn, F., Jarmar, T., Engqvist, H., & Pameijer, C. H. (2008). A comparative study of the bioactivity of three materials for dental applications. Dental Materials, 24(5), 653-659. [28]Tan, L., Yu, X., Wan, P., & Yang, K. (2013). Biodegradable materials for bone repairs: a review. Journal of Materials Science & Technology, 29(6), 503-513. [29]Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465-1485. [30]Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4), 334. [31]Black, J. (2005). Biological performance of materials: fundamentals of biocompatibility. Crc Press. [32]Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2001). Biomedical applications of polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224. [33]Kim, M. S., Khang, G., & Lee, H. B. (2008). Gradient polymer surfaces for biomedical applications. Progress in polymer science, 33(1), 138-164. [34]Brocchini, S. (2001). Combinatorial chemistry and biomedical polymer development. Advanced drug delivery reviews, 53(1), 123-130. [35]Wang, L., Abedalwafa, M., Wang, F., & Li, C. (2013). Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev. Adv. Mater. Sci, 34, 123-140. [36]Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., & Ramakrishna, S. (2010). Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Materials science and engineering: C, 30(8), 1129 [37]Liu, J. Y., Reni, L., Wei, Q., Wu, J. L., Liu, S., Wang, Y. J., & Li, Y. (2011). Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polymer Letters, 5(8). [38]Hakkarainen, M., & Albertsson, A. C. (2002). Heterogeneous biodegradation of polycaprolactone–low molecular weight products and surface changes. Macromolecular Chemistry and Physics, 203(10‐11), 1357-1363 [39]Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15-33. [40]Prashanth, L., Kattapagari, K. K., Chitturi, R. T., Baddam, V. R. R., & Prasad, L. K. (2015). A review on role of essential trace elements in health and disease. Journal of dr. ntr university of health sciences, 4(2), 75. [41]Al-Fartusie, F. S., & Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci, 5(3), 127-136. [42]Kaur, K., Gupta, R., Saraf, S. A., & Saraf, S. K. (2014). Zinc: the metal of life. Comprehensive Reviews in Food Science and Food Safety, 13(4), 358-376. [43]Venezuela, J., & Dargusch, M. S. (2019). The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta biomaterialia, 87, 1-40. [44]Gao, Z., Zhang, D., Liu, Z., Li, X., Jiang, S., & Zhang, Q. (2019). Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: a review. Journal of Coatings Technology and Research, 16(1), 1-13. [45]Yuan, W., Xia, D., Wu, S., Zheng, Y., Guan, Z., & Rau, J. V. (2022). A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive materials, 7, 192-216. [46]Janbozorgi, M., Taheri, K. K., & Taheri, A. K. (2019). Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application. Journal of Magnesium and Alloys, 7(1), 80-89. [47]Song, G. (2007). Control of biodegradation of biocompatible magnesium alloys. Corrosion science, 49(4), 1696-1701. [48]Murad Ali, Mohamed Elsherif, Ahmed E. Salih, Anwar Ul-Hamid, M.A. Hussein, Seongjun Park, Ali K. Yetisen, Haider Butt. (2020). Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances. Journal of Alloys and Compounds, 825, 154140. [49]Apelian, D., Paliwal, M., & Herrschaft, D. C. (1981). Casting with zinc alloys. Jom, 33(11), 12-20. [50]Patrick K. Bowen, Roger J. Guillory II, Emily R. Shearier, Jan-Marten Seitz, Jaroslaw Drelich, Martin Bocks, Feng Zhao, Jeremy Goldman. (2015). Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering: C, 56, 467-472. [51]Bowen, P. K., Drelich, J., & Goldman, J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced materials, 25(18), 2577-2582. [52]Yuqin Qiao, Wenjie Zhang, Peng Tian, Fanhao Meng, Hongqin Zhu, Xinquan Jiang, Xuanyong Liu, Paul K. Chu. (2014). Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 35(25), 6882-6897. [53]Yang, H., Qu, X., Lin, W., Wang, C., Zhu, D., Dai, K., & Zheng, Y. (2018). In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta biomaterialia, 71, 200-214. [54]Su, Y., Wang, K., Gao, J., Yang, Y., Qin, Y. X., Zheng, Y., & Zhu, D. (2019). Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta biomaterialia, 98, 174-185. [55]Hongtao Yang, Cong Wang, Chaoqiang Liu, Houwen Chen, Yifan Wu, Jintao Han, Zichang Jia, Wenjiao Lin, Deyuan Zhang, Wenting Li, Wei Yuan, Hui Guo, Huafang Li, Guangxin Yang, Deling Kong, Donghui Zhu, Kazuki Takashima, Liqun Ruan, Jianfeng Nie, Xuan Li, Yufeng Zheng. (2017). Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 145, 92-105. [56]Balasubramanian, P., Strobel, L. A., Kneser, U., & Boccaccini, A. R. (2015). Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomedical glasses, 1(1). [57]Su, Y., Cockerill, I., Wang, Y., Qin, Y. X., Chang, L., Zheng, Y., & Zhu, D. (2019). Zinc-based biomaterials for regeneration and therapy. Trends in biotechnology, 37(4), 428-441. [58]Katarivas Levy, G., Goldman, J., & Aghion, E. (2017). The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals, 7(10), 402. [59]Chakraborty, R., Mandal, M., & Saha, P. (2019). Electrochemical stability and bio-mineralization capability of zinc substituted and elemental zinc reinforced calcium phosphate composite coatings synthesized through pulsed electro-deposition. Ceramics International, 45(17), 22899-22911. [60]Guannan Lia, Hongtao Yanga, Yufeng Zheng, Xie-Hui Chen, Jian-An Yang, Donghui Zhu, Liqun Ruan, Kazuki Takashima. (2019). Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta biomaterialia, 97, 23-45. [61]Nemes, P. I., Lekka, M., Fedrizzi, L., & Muresan, L. M. (2014). Influence of the electrodeposition current regime on the corrosion resistance of Zn–CeO2 nanocomposite coatings. Surface and Coatings Technology, 252, 102-107. [62]Youssef, K. M., Koch, C. C., & Fedkiw, P. S. (2008). Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes. Electrochimica Acta, 54(2), 677-683. [63]Proskurkin, E. V., Petrov, I. V., Zhuravlev, A. Y., Ivanov, O. V., & Sukhomlin, D. A. (2012). Analysis of zinc coatings on the basis of the iron-zinc phase diagram. Steel in Translation, 42(7), 600-605. [64]Zhu, S., Liu, Z., Qu, R., Wang, L., Li, Q., & Guan, S. (2013). Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. Journal of Magnesium and Alloys, 1(3), 249-255. [65]Li, H., Wang, P., Lin, G., & Huang, J. (2021). The role of rare earth elements in biodegradable metals: A review. Acta Biomaterialia, 129, 33-42. [66]Furko, M., Jiang, Y., Wilkins, T. A., & Balázsi, C. (2016). Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Materials Science and Engineering: C, 62, 249-259. [67]Kim, H. W., Kong, Y. M., Bae, C. J., Noh, Y. J., & Kim, H. E. (2004). Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials, 25(15), 2919-2926. [68]Šupová, M. (2015). Substituted hydroxyapatites for biomedical applications: A review. Ceramics international, 41(8), 9203-9231. [69]Chen, Y., & Miao, X. (2005). Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials, 26(11), 1205-1210. [70]Bir, F., Khireddine, H., Touati, A., Sidane, D., Yala, S., & Oudadesse, H. (2012). Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Applied Surface Science, 258(18), 7021-7030. [71]Liu, S., Zhou, H., Liu, H., Ji, H., Fei, W., & Luo, E. (2019). Fluorine‐contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Proliferation, 52(3), e12613. [72]Byrappa, K., & Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Progress in crystal growth and characterization of materials, 53(2), 117-166. [73]Shandilya, M., Rai, R., & Singh, J. (2016). Hydrothermal technology for smart materials. Advances in Applied Ceramics, 115(6), 354-376. [74]Goglio, G., Ndayishimiye, A., Largeteau, A., & Elissalde, C. (2019). View point on hydrothermal sintering: Main features, today's recent advances and tomorrow's promises. Scripta Materialia, 158, 146-152. [75]Feng, S., & Xu, R. (2001). New materials in hydrothermal synthesis. Accounts of chemical research, 34(3), 239-247. [76]Guo, X., & Xiao, P. (2006). Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. Journal of the European Ceramic Society, 26(15), 3383-3391. [77]永田夫久江, 横川善之, 鳥山素弘, 河本ゆかり, 鈴木高広, & 西澤かおり. (1995). メタノール共存下における水酸アパタイト微結晶の水熱合成. Journal of the Ceramic Society of Japan (日本セラミックス協会学術論文誌), 103(1193), 70-73. [78]Nagata, F., Yokogawa, Y., Toriyama, M., Kawamoto, Y., Suzuki, T., Nishizawa, K., & Nagae, H. (1994). Hydrothermal synthesis of plate-like hydroxyapatite crystals. In Advanced Materials' 93 (pp. 11-14). Elsevier. [79]Young, T. (1805). III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, (95), 65-87. [80]Alharbi, A. R., Alarifi, I. M., Khan, W. S., & Asmatulu, R. (2016). Highly hydrophilic electrospun polyacrylonitrile/polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. Journal of Membrane and Separation Technology, 5(2), 38-56. [81]Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(22), 2686-2725. [82]Höhn, S., Virtanen, S., & Boccaccini, A. R. (2019). Protein adsorption on magnesium and its alloys: A review. Applied Surface Science, 464, 212-219. [83]Kahlert, H. (2010). Reference electrodes. In Electroanalytical methods (pp. 291-308). Springer, Berlin, Heidelberg. [84]Curioni, M. (2014). The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 120, 284-292. [85]Králová, Z. O., Gorejová, R., Oriňaková, R., Petráková, M., Oriňak, A., Kupková, M., Hrubovcáková, M., Sopcák, T., Baláz, M., Maskalová, I., Kovalciková, A., & Kovaľ, K. (2021). Biodegradable zinc-iron alloys: Complex study of corrosion behavior, mechanical properties and hemocompatibility. Progress in Natural Science: Materials International, 31(2), 279-287. [86]E Badea, G. E., Caraban, A., Sebesan, M., Dzitac, S., Cret, P., & Setel, A. (2010). Polarisation measurements used for corrosion rates determination. Journal of sustenable energy, 1(1), 1-4. [87]Instruments, G. (2007). Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 1-30. [88]Freger, V., & Bason, S. (2007). Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. Principles and theory. Journal of Membrane Science, 302(1-2), 1-9. [89]Zhang, X., Li, Q., Li, L., Zhang, P., Wang, Z., & Chen, F. (2012). Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy. Materials Letters, 88, 76-78. [90]Shao, H., Yu, X., Lin, T., Peng, J., Wang, A., Zhang, Z., Yumeng, Z., Shuwen, L., & Zhao, M. (2020). Effect of PCL concentration on PCL/CaSiO3 porous composite scaffolds for bone engineering. Ceramics International, 46(9), 13082-13087. [91]Ansari, Z., Kalantar, M., Kharaziha, M., Ambrosio, L., & Raucci, M. G. (2020). Polycaprolactone/fluoride substituted-hydroxyapatite (PCL/FHA) nanocomposite coatings prepared by in-situ sol-gel process for dental implant applications. Progress in Organic Coatings, 147, 105873.
|