[1]紀永台,2019,“布建彈性/傳輸穩定度兼備IIoT結合5G實現智慧製造”,新通訊元件雜誌,11月5號,取自https://www.2cm.com.tw/2cm/zh-tw/tech/001501DE35C645428B8BE06622EF1AEE。
[2]物流技術與戰略雜誌社逼編輯部,2020,“技術 & 場景 AGV發展‘百花齊放’”,物流技術與戰略雜誌,103期,2月。
[3]J. Langer, V.K. Sagar (1994). Multiple capacity single vehicle job scheduling for AGV's. Hamburg, Germany, Second International Conference on `Intelligent Systems Engineering'.
[4]過去與未來,AGV自動引導小車的結構、原理與功能,每日頭條,5月18號,取自https://kknews.cc/zh-tw/news/2995g89.htm
[5]Alladi, T., Chamola, V., Parizi, R. M., & Choo, K. R. (2019). Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access, 7, 176935-176951. doi:10.1109/ACCESS.2019.2956748
[6]Mohamed, N., Al-Jaroodi, J., & Lazarova-Molnar, S. (2019). Leveraging the Capabilities of Industry 4.0 for Improving Energy Efficiency in Smart Factories. IEEE Access, 7, 18008-18020. doi:10.1109/ACCESS.2019.2897045
[7]蔡侑晉. (2020). 自動化排程與派工系統對一元化代工服務的生產效率提升之研究–以某半導體封測廠為研究對象. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/4ek947[8]余柏霖. (2017). 應用即時派工系統改善緊急批產品生產週期. (碩士), 長庚大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/48mm8p[9]Wijesoma, W. S., Ping Ping, K., & Eam Khwang, T. (1999, 5-8 Oct. 1999). Control and navigation of an outdoor AGV using fuzzy reasoning. Paper presented at the Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).
[10]Ding, G., Lu, H., Bai, J., & Qin, X. (2020, 24-26 April 2020). Development of a High Precision UWB/Vision-based AGV and Control System. Paper presented at the 2020 5th International Conference on Control and Robotics Engineering (ICCRE).
[11]Xu, B., & Wang, D. (2018, 30 Nov.-2 Dec. 2018). Magnetic Locating AGV Navigation Based on Kalman Filter and PID Control. Paper presented at the 2018 Chinese Automation Congress (CAC).
[12]Bore, D., Rana, A., Kolhare, N., & Shinde, U. (2019, 23-25 April 2019). Automated Guided Vehicle Using Robot Operating Systems. Paper presented at the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI).
[13]Conner, D. C., & Willis, J. (2017, 30 March-2 April 2017). Flexible Navigation: Finite state machine-based integrated navigation and control for ROS enabled robots. Paper presented at the SoutheastCon 2017.
[14]Quintas, João, Teixeira, Francisco Curado, Pascoal, António.(2018), AUV Geophysical Navigation using Magnetic Data - the MEDUSA GN System, aper presented at the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS)
[15]Filipenko, M., & Afanasyev, I. (2018, 25-27 Sept. 2018). Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment. Paper presented at the 2018 International Conference on Intelligent Systems (IS).
[16]Ibáñez, A. L., Qiu, R., & Li, D. (2017, 21-23 June 2017). A Simple, Cost-Effective and Practical Implementation of SLAM Using ROS and Arduino. Paper presented at the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
[17]Tarek, M., Moataz, A., Khaled, M., Hammam, A., Shehata, O. M., & Morgan, E. I. (2018, 12-14 Sept. 2018). Multisensor Filtration and Fusion on a Three-Layer Architecture. Paper presented at the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES).
[18]Yilmaz, A., & Temeltas, H. (2019, 28-30 Nov. 2019). ROS Architecture for Indoor Localization of Smart-AGVs Based on SA-MCL Algorithm. Paper presented at the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO).
[19]Reke, M., Peter, D., Schulte-Tigges, J., Schiffer, S., Ferrein, A., Walter, T., & Matheis, D. (2020, 29-31 Jan. 2020). A Self-Driving Car Architecture in ROS2. Paper presented at the 2020 International SAUPEC/RobMech/PRASA Conference.
[20]Pleune, M., Paul, N., Faulkner, C., & Chung, C. J. (2020, 31 July-1 Aug. 2020). Specifying Route Behaviors of Self-Driving Vehicles in ROS Using Lua Scripting Language with Web Interface. Paper presented at the 2020 IEEE International Conference on Electro Information Technology (EIT).
[21]Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 23(1), 34-46. doi:10.1109/TRO.2006.889486
[22]Kohlbrecher, S., Stryk, O. v., Meyer, J., & Klingauf, U. (2011, 1-5 Nov. 2011). A flexible and scalable SLAM system with full 3D motion estimation. Paper presented at the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.
[23]Farley, Greg, Chapman, Mark. (2008), An Alternate Approach to GPS Denied Navigation Based on Monocular SLAM Techniques, Proceedings of the 2008 National Technical Meeting of The Institute of Navigation.
[24]Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/TSSC.1968.300136
[25]Wikipedia contributors. (2021). Dijkstra's algorithm., 取自 https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=1050521755.
[26]Padgett, C., & Kreutz-Delgado, K. (1997). A grid algorithm for autonomous star identification. IEEE Transactions on Aerospace and Electronic Systems, 33(1), 202-213. doi:10.1109/7.570743
[27]Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354-363. doi:10.1109/TRO.2004.838026
[28]Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23-33. doi:10.1109/100.580977
[29]Khatib, O. (1985, 25-28 March 1985). Real-time obstacle avoidance for manipulators and mobile robots. Paper presented at the Proceedings. 1985 IEEE International Conference on Robotics and Automation.
[30]igus® Taiwan Company Ltd.(2021),XY型線性滑台,取自https://www.igus.com.tw/info/xy-tables。
[31]Smart Robot Technology Co. Ltd. (2021),Dynamixel.,取自http://www.smart-robot.com.tw/product_d.php?lang=tw&tb=1&id=42&cid=21。
[32]Widodo, N. S., Arsadiando, W., Rahman, A., & Hatta, M. I. F. (2017, 19-21 Sept. 2017). Parameterized kick engine for R-SCUAD robot. Paper presented at the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI).
[33]Novita, D., Hasim, M. Y. S., Wibawa, B. M., & Turnip, A. (2021, 28-30 April 2021). 3D Control System of Arm Robot Prototype for Skin Cancer Detection. Paper presented at the 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS).
[34]Bao, B., Duan, Z., & Chen, W. (2020, 6-8 Dec. 2020). Mission Scheduling of Multi-AGV System With Dynamic Simulation. Paper presented at the 2020 International Symposium on Autonomous Systems (ISAS).
[35]Draganjac, I., Miklić, D., Kovačić, Z., Vasiljević, G., & Bogdan, S. (2016). Decentralized Control of Multi-AGV Systems in Autonomous Warehousing Applications. IEEE Transactions on Automation Science and Engineering, 13(4), 1433-1447. doi:10.1109/TASE.2016.2603781
[36]Weining, L., Tao, Z., Jun, Y., & Xueqian, W. (2015, 28-30 July 2015). A formation control approach with autonomous navigation of multi-robot system in unknown environment. Paper presented at the 2015 34th Chinese Control Conference (CCC).
[37]kate cheng.(2019),ROS Navigation,取自https://ithelp.ithome.com.tw/articles/10222020.
[38]Wikipedia contributors. (2021). Monte Carlo localization. , 取自 https://en.wikipedia.org/w/index.php?title=Monte_Carlo_localization&oldid=997855519
[39]NickLamprianidis. (2018). costmap_2d., 取自 http://wiki.ros.org/costmap_2d
[40]ROBOTIS. (2021). DYNAMIXEL MX Series,取自 https://emanual.robotis.com/docs/en/dxl/
[41]DELTA. (2021). DVP-SE系列,取自 https://www.deltaww.com/zh-TW/products/PLC-Programmable-Logic-Controllers/272