1.Schomer, D. L., & Da Silva, F. L., (2011), Nidermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, sixth edition, Lippincott Williams & Wilkins.
2.Lin, F. Y., (2017). “An EEG-based Driver Drowsiness Detection System Design”, Institute of Computer Science and Information Engineering, Master Thesie, National Chung Cheng University, Chiayi.
3.Lin, C. J., Ding, C. H., Liu, C. C., & Liu, Y. L. (2015). “Development of a real-time drowsiness warning system based on an embedded system”. In 2015 International Conference on Advanced Robotics and Intelligent Systems (ARIS) . IEEE, pp. 1-4
4.Pour, P. A., Gulrez, T., AlZoubi, O., Gargiulo, G., & Calvo, R. A. (2008). “Brain-computer interface: Next generation thought controlled distributed video game development platform”. Symposium On Computational Intelligence and Games . IEEE, pp. 251-257
5.Girase, P. D., & Deshmukh, M. P. (2016). “MindWave device wheelchair control”. International Journal of Science and Research (IJSR), 5(6), pp. 2172-2176.
6.Al-Quraishi, M. S., Elamvazuthi, I., Daud, S. A., Parasuraman, S., & Borboni, A. (2018). “EEG-based control for upper and lower limb exoskeletons and prostheses: A systematic review”. Sensors, 18(10), 3342.
7.Tariq, M., Trivailo, P. M., & Simic, M. (2018). “EEG-based BCI control schemes for lower-limb assistive-robots”. Frontiers in human neuroscience, 12, 312.
8.Vinoj, P. G., Jacob, S., Menon, V. G., Rajesh, S., & Khosravi, M. R. (2019). “Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed”. IEEE Access, 7, pp. 132628-132648.
9.Katona, J., & Kovari, A. (2015). “EEG-based Computer Control Interface for Brain-Machine Interaction”. International Journal of Online Engineering, 11(6), pp. 43-48
10.腦造影實驗室(2021/8/17):
https://bml.ym.edu.tw/bmlab/22823331263312627874.html
11.維基百科:腦電圖(2021/1/13):
https://zh.wikipedia.org/zh-tw/%E8%85%A6%E9%9B%BB%E5%9C%96
12.維基百科:腦電波(2021/1/13):
https://zh-yue.wikipedia.org/wiki/%E8%85%A6%E9%9B%BB%E6%B3%A2
13.維基百科:alpha wave(α波)(2021/1/15):
https://wuu.wikipedia.org/wiki/%CE%91%E6%B3%A2
14.維基百科:beta wave(β波)(2021/1/15):
https://zh-yue.wikipedia.org/wiki/%CE%92_%E6%B3%A2
15.Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., Millán, J. D. R., Allison, B., & Müller, K. R. (2008). “Brain-computer interfacing for intelligent systems”. IEEE intelligent systems, 23(3), pp. 72-79.
16.楠木軒:腦機介面(2021/2/10):
https://www.nanmuxuan.com/zh-tw/science/txkehqbgfd.html
17.3D anatomy platform:Brain-computer interface(剖面圖)(2021/3/2):
https://3d4medical.com/blog/brain-computer-interfaces
18.Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G.,& Vaughan, T. M. (2000). “Brain-computer interface technology: a review of the first international meeting”. IEEE transactions on rehabilitation engineering, 8(2), pp. 164-173.
19.維基百科:大腦皮質(2021/3/7):
https://zh.wikipedia.org/zhhk/%E5%A4%A7%E8%84%91%E7%9A%AE%E8%B4%A8
20.Wikipedia:10-20 system (EEG)(2021/3/5):
https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)
21.Klem, G. H. (1999). “The ten-twenty electrode system of the international federation”. The international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl., 52, pp. 3-6.
22.Rajaraman, S., Bragg, J. A., Ross, J. D., & Allen, M. G. (2011). “Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking”. Journal of Micromechanics and Microengineering, 21(8), 085014.
23.電極膠片圖(2022/11/28):
https://www.hometech.com.tw/webls-zh-tw/product--74.html
24.乾式濕式電極比較(2021/3/15):
https://www.materialsnet.com.tw/DocView.aspx?id=46850
25.Birbaumer, N., Elbert, T., Canavan, A. G., & Rockstroh, B. (1990). “Slow potentials of the cerebral cortex and behavior”. Physiological reviews, 70(1), pp. 1-41.
26.Birbaumer, N., Hinterberger, T., Kubler, A., & Neumann, N. (2003). “The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome”. IEEE transactions on Neural Systems and rehabilitation engineering, 11(2), pp. 120-123.
27.Hinterberger, T., Schmidt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G., & Birbaumer, N. (2004). “Brain-computer communication and slow cortical potentials”. IEEE Transactions on Biomedical Engineering, 51(6), pp. 1011-1018.
28.Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). “Brain computer interfaces, a review”. sensors, 12(2), pp. 1211-1279.
29.Iversen, I. H., Ghanayim, N., Kübler, A., Neumann, N., Birbaumer, N., & Kaiser, J. (2008). “A brain–computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis”. Clinical neurophysiology, 119(10), pp. 2214-2223.
30.Pfurtscheller, G., & Neuper, C. (2001). “Motor imagery and direct brain-computer communication”. Proceedings of the IEEE, 89(7), pp. 1123-1134.
31.Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K. R., & Dickhaus, T. (2010). “Neurophysiological predictor of SMR-based BCI performance”. Neuroimage, 51(4), pp. 1303-1309.
32.Yin, J., Jiang, D., & Hu, J. (2009). “Design and application of brain-computer interface web browser based on VEP”. In 2009 International Conference on Future BioMedical Information Engineering (FBIE). IEEE, pp. 77-80
33.孫光天,汪昌賢,曾瑞敏,連悅珊,李耀全,蘇士閔,謝宗澔,2008 11月,運用P300訊號於偵測大腦印象之研究 The Study of Using P300 to Detect Image, 台灣國際醫學資訊聯合研討會 (JCMIT),pp. 80-84。
34.Korovesis, N., Kandris, D., Koulouras, G., & Alexandridis, A. (2019). “Robot motion control via an EEG-based brain–computer interface by using neural networks and alpha brainwaves”. Electronics, 8(12), 1387.
35.大腦視覺與事件誘發電位P300(2022/11/3):
https://reurl.cc/Ay78EE
36.NeuroSky:TGAM模組(2020/11/7):
http://neurosky.com/biosensors/eeg-sensor/
37.NeuroSky:MindWave MOBLE(2020/11/9):
https://store.neurosky.com/pages/mindwave
38.NeuroSky’s eSense Meters and Detection of Mental State(2022/11/4):
https://frontiernerds.com/files/neurosky-e-sense-white-paper.pdf
39.Brainlink旗艦科研腦波儀圖片(2022/4/15):
http://www.neurosky.com.tw/products-markets/eeg-biosensors/hardware/
40.Denison, S., Faulkner, A. S., Gaitatzis, T., Moore, A., Sawatsky, R., Veinotte, C., Daoust, B., & Loh, E. A, (2017), Methods and devices for brain activity monitoring supporting mental state development and training, US9532748B2.
41.腦力驅動殘疾人輪椅與腦電波圖像顯示設計(2022/11/5):
https://kknews.cc/zh-tw/tech/4m28rlq.html
42.趙英傑,2019年1月,Arduino互動設計入門第3版,旗標,台北市。
43.蔵下まさゆき,2018年7月,Arduino連上網好好玩,旗標,台北市。
44.Arduino UNO(2022/1/7):
https://reurl.cc/9pkGlX
45.維基百科: Bluetooth(2021/5/7):
https://zh.m.wikipedia.org/zh-hant/%E8%97%8D%E7%89%99
46.HC-05藍牙模組(2022/1/9):
http://news.eeworld.com.cn/mcu/ic620924.html
47.ESP8266 WIFI 模組使用手冊(2021/8/17):
https://iottalk.vip/static/iottalk/01/ESP8266UsersGuide.pdf
48.ESP8266(2022/1/9):
https://mlwmlw.org/2015/07/%E6%B7%B1%E5%85%A5%E6%B7%BA%E5%87%BA-wifi-%E6%99%B6%E7%89%87-esp8266-with-arduino/
49.L293D馬達驅動擴展板(2022/1/10):
https://reurl.cc/xQm9nb
50.Realterm:Serial Terminal(2021/10/8):
https://realterm.sourceforge.io/
51.ThingSpeak(2021/11/1):
https://thingspeak.com/pages/learn_more
52.麥卡納姆輪(2022/3/17):
https://zh.wikipedia.org/zhtw/%E9%BA%A6%E5%8D%A1%E7%BA%B3%E5%A7%86%E8%BD%AE
53.Diegel, O., Badve, A., Bright, G., Potgieter, J., & Tlale, S. (2002). “Improved mecanum wheel design for omni-directional robots”. In Proc. 2002 Australasian conference on robotics and automation, Auckland, pp. 117-121.
54.Mechanics Of Mecanum Wheel(English version)(2022/3/18):
https://www.youtube.com/watch?v=Xrc0l4TDnyw
55.邱文毅,2016,提神飲料對消除疲勞之腦波探討,嘉南藥理大學,碩士論文。56.曾明正,2016,外勤消防人員不同疲勞程度與腦波特性之探討:以屏東縣為例,大仁科技大學,碩士論文。57.Xavier, G., Ting, A. S., & Fauzan, N. (2020). “Exploratory study of brain waves and corresponding brain regions of fatigue on-call doctors using quantitative electroencephalogram”. Journal of occupational health, 62(1), e12121.
58.Craig, A., Tran, Y., Wijesuriya, N., & Nguyen, H. (2012). “Regional brain wave activity changes associated with fatigue”. Psychophysiology, 49(4), pp. 574-582.
59.同頻干擾(2022/9/28):
https://www.easyatm.com.tw/wiki/%E5%90%8C%E9%A0%BB%E5%B9%B2%E6%93%BE