田欣利、王龍、郭昉、王望龍、雷蕾 (2016),小砂輪軸向大切深緩進給磨削的磨損特徵,每日頭條,2022年07月03日檢自https://kknews.cc/zh-tw/news/leyar9.html 。
白賜清 (2012),「推廣田口品質工程心得」,品質月刊,48卷,07期,頁12–13。
白賜清 (2017),「實驗設計與田口方法之比較」,品質月刊,53卷,06期,頁07–08。
台灣電力公司 (2019年11月18日),「第四章電費之計收」,2022年09月05日檢自https://www.taipower.com.tw/upload/159/2019111814372337222.pdf。
李孟宸 (2016),銑削工程塑膠之最佳化刀具設計與刀具研磨效能分析,國立虎尾科技大學機械與電腦輔助工程系碩士班,碩士論文。林建良 (2022),2022年第一季我國鋼鐵產業回顧與展望,2022年08月17日檢自https://www.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=669056949&type=netreport。
洪錦輝 (1990),多響應離線半導體生產製造品質管制,國立交通大學工業工程研究所,碩士論文。國家發展委員會 (2020),「中華民國人口推估(2020至2070年)」,2022年07月02日檢自https://www.ndc.gov.tw/Content_List.aspx?n=695E69E28C6AC7F3。
盛其安 (2004),「追念美國移民田口式品質工程專家——吳玉印先生」,品質月刊,40卷,09期,頁30–31。
葉雲霆 (2014),膠體磁力研磨對曲面拋光之特性研究,健行科技大學機械工程系碩士班,碩士論文。經濟部中小企業處 (2022),「2021年中小企業白皮書」,2022年07月04日檢自https://info.moeasmea.gov.tw/files/10558/CAD79DD1-DDAD-49AC-B9F3-AA5E17B7258A。
經濟部能源局(2022年08月05日),「110年度電力排碳係數」,2022年08月21日檢自https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=114。
經濟部統計處(2021年10月05日),「受惠全球經濟復甦,鋼鐵出口可望結束連續2年負成長」,2022年08月17日檢自https://www.moea.gov.tw/mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=97153。
蔡耀宗 (2004),「品質工程大師田口玄一博士八秩論壇21世紀品質工程新趨勢研討會記實」,品質月刊,40卷,10期,頁17–20。
賴昶叡 (2020),採用自製之精密鑽石砂輪磨床研磨晶圓晶片之加工研究,國立宜蘭大學機械與機電工程學系研究所,碩士論文。鍾清章 (2012),「一代品質工程大師的殞落——田口玄一博士逝世感言」,品質月刊,48卷,07期,頁09–11。
鍾清章 (2019),「田口方法的沿革與哲理(一)」,品質月刊,55卷,04期,頁14–19。
鍾清章 (2019),「田口方法的沿革與哲理(三)」,品質月刊,55卷,06期,頁30–34。
蘇朝墩 (2004),「專訪世界品質大師田口玄一博士」,品質月刊,40卷,03期,頁30–32。
Athreya, S. & Venkatesh, Y. D. (2012). “Application of Taguchi Method for Optimization of Process Parameters in Improving the Surface Roughness of Lathe Facing Operation”, International Refereed Journal of Engineering and Science(IRJES), Vol. 01, pp.13–19.
Al Hazza, M. H. F., Bt Ibrahim, N. A., Triblas Adesta, E. Y. & Ali Khan, A. (2017). “Surface Roughness Optimization Using Taguchi Method of High Speed End Milling For Hardened Steel D2”, International Conference on Mechanical, Automotive and Aerospace Engineering 2016 , Kuala Lumpur, Malaysia, July 25–27.
Ikumapayi, O. M. & Akinlabi, E. T. (2019). “Experimental Data on Surface Roughness and Force Feedback Analysis in Friction Stir Processed AA7075–T651 Aluminium Metal Composites”, Journal Data in Brief , Vol. 23:103710.
Jayarjun Kandam, B. & Mahajan, K. A. (2021). “Optimization of Cutting Temperature in Machining of Titanium Alloy Using Response Surface Method, Genetic Algorithm and Taguchi Method”, Materials Today: Proceedings, Vol. 47, No. 47, pp.6285–6290.
Jin, X. X. (2013). “Optimum Design of Grinding Parameters for End-Mill Based on Taguchi Method”, Machinery Design & Manufacture, Vol. 05, pp.235–237.
Li, M. -H. C., Al-Refaie, A. & Yang, C. Y. (2008). “DMAIC Approach to Improve the Capability of SMT Solder Printing Process”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 31, No. 02, pp.126–133.
Li, Y., Li, Y. F., Wang, Q. L., Xu, D. & Tan, M. (2010). “Measurement and Defect Detection of the Weld Bead Based on Online Vision Inspection”, IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 07, pp.1841–1849.
Lin, W. F. & Lu, H. S. (2006). “Optimal Cutting–Parameter Design of Heavy Cutting Process for Side Milling Using Taguchi Method with Fuzzy Logics”, Journal of Technology, Vol. 21, No. 02, pp.111–116.
Logothetis, N. & Haigh, A. (1988). “Characterizing and Optimizing Multi-Response Processes by the Taguchi Method”, Quality and Reliability Engineering International, Vol. 04, pp.159–169.
Lu, H. S., Hwang, N. C. & Chang, C. K. (2007). “Optimal Parameter Design of High–Speed End Milling Using Taguchi—Principal Component Analysis Approach”, Journal of Technology, Vol. 22, No. 04, pp.325–333.
Lu, H. S., Lee, B. Y. & Chung, C. T. (2008). “Design Optimization of Grinding Parameters for Resharpening End-Mill”, Journal of Technology, Vol. 23, No. 03, pp.149–154.
Nalbant, M., Gokkaya, H. & Sur, G. (2007). “Application of Taguchi Method in the Optimization of Cutting Parameters for Surface Roughness in Turning”, Materials and Design, Vol. 28, pp.1379–1385.
Phadke, M. S. (1989). Quality Engineering Using Robust Design, Prentice Hall, New Jersey, USA.
Su, J., Yuan, J. L., Zhang, S., Cao, L. L., Lu, B. H. & Yao, W. F. (2018). “Experiment on Optimization of Lapping Cylindrical Roller”, Diamond & Abrasives Engineering, Vol. 38, No. 02, pp.82–88.
Taguchi, G., Chowdhury, S. & Wu, Y. (2004). Taguchi's Quality Engineering Handbook, John Wiley and Sons, New Jersey, USA.
Tai, C. Y., Chen, T. S. & Wu, M. C. (1992). “An Enhanced Taguchi Method for Optimizing SMT Processes”, Journal of Electronics Manufacturing, Vol. 02, No. 03, pp.91–100.
Tarng, Y. S. & Yang, W. H. (1998). “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology, Vol. 84, pp.122–129.
The World Bank (April 01, 2022). “Key Statistics for 2022 on Initiative(s) Implemented”, available at https://carbonpricingdashboard.worldbank.org/map_data retrieved July 19, 2022.
Tong, L. I., Su, C. T. & Wang, C. H. (1997). “The Optimization of Multi-Response Problems in the Taguchi Method”, International Journal of Quality & Reliability Management, Vol. 14, No. 04, pp.367–380.
Ribeiro, J., Queijo, L., Lopes, H. & Figueiredo, D. (2017). “Optimization of Cutting Parameters to Minimize the Surface Roughness in the End Milling Process Using the Taguchi Method”, Periodica Polytechnica Mechanical Engineering, Vol. 61(1), pp.30–35.
Roopa, T., Rajveer, S. & Mohammad, I. A. (2018). “Optimizing Surface Roughness in Turning Operation Using Taguchi Technique”, Materials Today: Proceedings, ICMPC2018, Vol. 05, pp.19043–19048.
Zhang, J. Z., Chen, J. C. & Kirby, E. D. (2007). “Surface Roughness Optimization in an End-milling Operation Using the Taguchi Design Method”, Journal of Materials Processing Technology, Vol. 184, pp.233–239.