|
[1]K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu and Y. Liu, "Deep learning for sensor-based human activity recognition: Overview challenges and opportunities", ACM Comput. Surv., vol. 54, no. 4, pp. 1-40, Jul. 2021, 10.1145/3447744. [2]I. Bisio, A. Delfino, F. Lavagetto and A. Sciarrone, "Enabling IoT for In-Home Rehabilitation: Accelerometer Signals Classification Methods for Activity and Movement Recognition", IEEE Internet Things J., vol. 4, no. 1, pp. 135-146, Feb. 2017, 10.1109/JIOT.2016.2628938. [3]S. Mekruksavanich and A. Jitpattanakul, "Biometric user identification based on human activity recognition using wearable sensors: An experiment using deep learning models", Electronics, vol. 10, no. 3, 2021, 10.3390/electronics10030308. [4]J. Huang, S. Lin, N. Wang, G. Dai, Y. Xie and J. Zhou, "TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition", IEEE J. Biomed. Health Informat., vol. 24, no. 1, pp. 292-299, Jan. 2020, 10.1109/JBHI.2019.2909688. [5]D. Anguita, A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, "A public domain dataset for human activity recognition using smartphones", Proc. ESANN, pp. 437-442, 2013. [6]R. Mutegeki and D. S. Han, "A CNN-LSTM Approach to Human Activity Recognition", Proc. ICAIIC, pp. 362-366, 2020, 10.1109/ICAIIC48513.2020.9065078. [7]F. Hernández, L. F. Suárez, J. Villamizar and M. Altuve, "Human Activity Recognition on Smartphones Using a Bidirectional LSTM Network", Proc. STSIVA, pp. 1-5, 2019, 10.1109/STSIVA.2019.8730249. [8]M. Ullah, H. Ullah, S. D. Khan and F. A. Cheikh, "Stacked Lstm Network for Human Activity Recognition Using Smartphone Data", Proc. EUVIP, pp. 175-180, 2019, 10.1109/EUVIP47703.2019.8946180. [9]C. Xu, D. Chai, J. He, X. Zhang and S. Duan, "InnoHAR: A Deep Neural Network for Complex Human Activity Recognition", IEEE Access, vol. 7, pp. 9893-9902, Jan. 2019, 10.1109/ACCESS.2018.2890675. [10]K. Xia, J. Huang and H. Wang, "LSTM-CNN Architecture for Human Activity Recognition", IEEE Access, vol. 8, pp. 56855-56866, Mar. 2020, 10.1109/ACCESS.2020.2982225. [11]X. Yang, Y. Lyu, Y. Sun and C. Zhang, "A New Residual Dense Network for Dance Action Recognition From Heterogeneous View Perception", Front. Neurorobotics, vol. 15, pp. 89, 2021, 10.3389/fnbot.2021.698779. [12]C. -T. Yen, J. -X. Liao and Y. -K. Huang, "Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms", IEEE Access, vol. 8, pp. 174105-174114, Sep. 2020, 10.1109/ACCESS.2020.3025938. [13]N. Dua, S. N. Singh and V. B. Semwal, "Multi-input CNN-GRU based human activity recognition using wearable sensors", Computing, vol. 103, pp. 1461-1478, Mar. 2021, 10.1007/s00607-021-00928-8. [14]O. Nafea, W. Abdul, G. Muhammad and M. Alsulaiman, "Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning", Sensors, vol. 21, no. 6, pp. 2141, Mar. 2021, 10.3390/s21062141. [15]D. Thakur and S. Biswas, "Feature fusion using deep learning for smartphone based human activity recognition", Int. J. Inf. Technol., pp. 1-10, Jun. 2021, 10.1007/s41870-021-00719-6. [16]C. Avilés-Cruz, A. Ferreyra-Ramírez, A. Zúñiga-López and J. Villegas-Cortéz, "Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition", Sensors, vol. 19, no. 7, pp. 1556, Mar. 2019, 10.3390/s19071556. [17]A. Avolio, "The finger volume pulse and assessment of arterial properties", J. Hypertens., vol. 20, no. 12, pp. 2341-2343, Dec. 2002, 10.1097/00004872-200212000-00007. [18]J. M. Padilla, E. J. Berjano, J. Saiz, L. Facila, P. Diaz and S. Merce, "Assessment of relationships between blood pressure, pulse wave velocity and digital volume pulse", Proc. Computers in Cardiology, pp. 893-896, 2006. [19]J. Allen, "Photoplethysmography and its application in clinical physiological measurement", Physiol. Meas., vol. 28, no.3, pp. R1-39, Mar. 2007, 10.1088/0967-3334/28/3/R01. [20]A. Chakraborty, D. Goswami, J. Mukhopadhyay and S. Chakrabarti, "Measurement of Arterial Blood Pressure Through Single-Site Acquisition of Photoplethysmograph Signal", IEEE Trans. Instrum. Meas., vol. 70, pp. 1-10, Jul. 2021, 10.1109/TIM.2020.3011304. [21]X. Chen, S. Yu, Y. Zhang, F. Chu and B. Sun, "Machine Learning Method for Continuous Noninvasive Blood Pressure Detection Based on Random Forest", IEEE Access, vol. 9, pp. 34112-34118, Feb. 2021, 10.1109/ACCESS.2021.3062033. [22]J. Liu et al., "PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects", IEEE J. Biomed. Health Inform., vol. 25, no. 3, pp. 663-673, Mar. 2021, 10.1109/JBHI.2020.3004032. [23]C. El-Hajj and P. A. Kyriacou, "Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism", Biomed. Signal Process. Control, vol. 65, pp. 102301, Mar. 2021, 10.1016/j.bspc.2020.102301. [24]C. El-Hajj and P. A. Kyriacou, "Cuffless and Continuous Blood Pressure Estimation From PPG Signals Using Recurrent Neural Networks", Proc. EMBC, pp. 4269-4272, 2020, 10.1109/EMBC44109.2020.9175699. [25]S. Kılıçkaya, A. Güner and B. Dal, "Comparison of Different Machine Learning Techniques for the Cuffless Estimation of Blood Pressure using PPG Signals", Proc. HORA, pp. 1-6, 2020, 10.1109/HORA49412.2020.9152602. [26]R. K. Nath and H. Thapliyal, "PPG Based Continuous Blood Pressure Monitoring Framework for Smart Home Environment", Proc. WF-IoT, pp. 1-6, 2020, 10.1109/WF-IoT48130.2020.9221386. [27]S. Baek, J. Jang, S. -H. Cho, J. M. Choi and S. Yoon, "Blood Pressure Prediction by a Smartphone Sensor using Fully Convolutional Networks", Proc. EMBC, pp. 188-191, 2020, 10.1109/EMBC44109.2020.9175902. [28]M. Panwar, A. Gautam, D. Biswas and A. Acharyya, "PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and Heart Rate Estimation", IEEE Sens. J., vol. 20, no. 17, pp. 10000-10011, Sep. 2020, 10.1109/JSEN.2020.2990864. [29]O. Schlesinger, N. Vigderhouse, D. Eytan and Y. Moshe, "Blood Pressure Estimation From PPG Signals Using Convolutional Neural Networks And Siamese Network", Proc. ICASSP, pp. 1135-1139, 2020, 10.1109/ICASSP40776.2020.9053446. [30]M. Singla, P. Sistla and S. Azeemuddin, "Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation", Proc. EMBC, pp. 4628-4631, 2019, 10.1109/EMBC.2019.8857709. [31]A. Chatterjee, M. Mitra and S. Pal, "Cuffless Systolic Blood Pressure Estimation Using Photoplethysmography Signal", Proc. GUCON, pp. 424-427, 2019. [32]C. Yan et al., "Novel Deep Convolutional Neural Network for Cuff-less Blood Pressure Measurement Using ECG and PPG Signals", Proc. EMBC, pp. 1917-1920, 2019, 10.1109/EMBC.2019.8857108. [33]S. Shimazaki, H. Kawanaka, H. Ishikawa, K. Inoue and K. Oguri, "Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN", Proc. EMBC, pp. 5042-5045, 2019, 10.1109/EMBC.2019.8856706. [34]W. -J. Guan et al., "Clinical characteristics of coronavirus disease 2019 in China", N. Engl. J. Med., vol. 382, pp. 1708-1720, 2020, 10.1056/NEJMoa2002032. [35]I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks", Phys. Eng. Sci. Med., vol. 43, pp. 635-640, 2020, 10.1007/s13246-020-00865-4. [36]M. E. H. Chowdhury et al., "Can AI Help in Screening Viral and COVID-19 Pneumonia?", IEEE Access, vol. 8, pp. 132665-132676, Jul. 2020, 10.1109/ACCESS.2020.3010287. [37]A. Gupta, Anjum, S. Gupta and R. Katarya, "InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray", Appl. Soft Comput., vol. 99, pp. 106859, 2021, 10.1016/j.asoc.2020.106859. [38]A. I. Khan, J. L. Shah and M. M. Bhat, "CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images", Comput. Methods Programs Biomed., vol. 196, pp. 105581, Nov. 2020, 10.1016/j.cmpb.2020.105581. [39]F. Ucar and D. Korkmaz, "COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images", Med. Hypotheses, vol. 140, Jul. 2020, 10.1016/j.mehy.2020.109761. [40]R. Bhadra and S. Kar, "Covid Detection from CXR Scans using Deep Multi-layered CNN", Proc. IBSSC, pp. 214-218, 2020, 10.1109/IBSSC51096.2020.9332210. [41]T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim and U. Rajendra Acharya, "Automated detection of COVID-19 cases using deep neural networks with X-ray images", Comput. Biol. Med., vol. 121, pp. 103792, Jun. 2020, 10.1016/j.compbiomed.2020.103792. [42]M. Toğaçar, B. Ergen and Z. Cömert, "COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches", Comput. Biol. Med., vol. 121, pp. 103805, Jun. 2020, 10.1016/j.compbiomed.2020.103805. [43]S. Minaee, R. Kafieh, M. Sonka, S. Yazdani and G. J. Soufi, "Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning", Med. Image Anal., vol. 65, pp. 101794, Jul. 2020, 10.1016/j.media.2020.101794. [44]E. F. Ohata et al., "Automatic detection of COVID-19 infection using chest X-ray images through transfer learning", IEEE/CAA J. Autom. Sin., vol. 8, no. 1, pp. 239-248, Jan. 2021, 10.1109/JAS.2020.1003393. [45]B. Bardak and M. Tan, "Improving clinical outcome predictions using convolution over medical entities with multimodal learning", Artif. Intell. Med., vol. 117, pp. 102112, Jul. 2021, 10.1016/j.artmed.2021.102112. [46]G. Harerimana, J. W. Kim and B. Jang, "A deep attention model to forecast the Length Of Stay and the in-hospital mortality right on admission from ICD codes and demographic data", J. Biomed. Inform., vol. 118, pp. 103778, 2021, 10.1016/j.jbi.2021.103778. [47]H. Harutyunyan, H. Khachatrian, D. C. Kale, G. V. Steeg and A. Galstyan, "Multitask Learning and Benchmarking with Clinical Time Series Data", Sci. Data, vol. 6, Jun. 2019, 10.1038/s41597-019-0103-9. [48]A. R. Nallabasannagari, M. Reddiboina, R. Seltzer, T. Zeffiro, A. Sharma and M. Bhandari, "All Data Inclusive, Deep Learning Models to Predict Critical Events in the Medical Information Mart for Intensive Care III Database (MIMIC III)", 2020. [Online]. Available: arXiv:2009.01366. [49]S. Purushotham, C. Meng, Z. Che and Y. Liu, "Benchmarking deep learning models on large healthcare datasets", J. Biomed. Inform., vol. 83, pp. 112-134, Jul. 2018, 10.1016/j.jbi.2018.04.007. [50]S. Wang, M. B. A. McDermott, G. Chauhan, M. Ghassemi, M. C. Hughes and T. Naumann, "MIMIC-Extract: a data extraction, preprocessing, and representation pipeline for MIMIC-III", 2020. [Online]. Available: arXiv:1907.08322v2. [51]K. Alghatani, N. Ammar, A. Rezgui and A. Shaban-Nejad, "Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation", JMIR Med. Inform., vol. 9, 2021, 10.2196/21347. [52]L. Li and G. Liu, "In-hospital Mortality Prediction for ICU Patients on Large Healthcare MIMIC Datasets Using Class Imbalance Learning", Proc. ICBDA, pp. 90-93, 2020, 10.1109/ICBDA49040.2020.9101272. [53]R. Yu, Y. Zheng, R. Zhang, Y. Jiang and C. C. Y. Poon, "Using a Multi-Task Recurrent Neural Network With Attention Mechanisms to Predict Hospital Mortality of Patients", IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp. 486-492, Feb. 2020, 10.1109/JBHI.2019.2916667. [54]S. M. Azar, M. G. Atigh, A. Nickabadi and A. Alahi, "Convolutional Relational Machine for Group Activity Recognition", Proc. CVPR, pp. 7884-7893, 2019, 10.1109/CVPR.2019.00808. [55]A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis, "Deep Learning for Computer Vision: A Brief Review", Comput. Intell. Neurosci., vol. 2018, 2018, 10.1155/2018/7068349. [56]A. S. Panayides et al., "AI in Medical Imaging Informatics: Current Challenges and Future Directions", IEEE J. Biomed. Health Inform., vol. 24, no. 7, pp. 1837-1857, Jul. 2020, 10.1109/JBHI.2020.2991043. [57]L. Xu, C. Jiang, J. Wang, J. Yuan and Y. Ren, "Information Security in Big Data: Privacy and Data Mining", IEEE Access, vol. 2, pp. 1149-1176, Oct. 2014, 10.1109/ACCESS.2014.2362522. [58]G. E. Hinton, S. Osindero and Y. -W. Teh, "A fast learning algorithm for deep belief nets", Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006, 10.1162/neco.2006.18.7.1527. [59]S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory", Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997, 10.1162/neco.1997.9.8.1735. [60]C. Olah, "Understanding LSTM Networks", 2015. [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs (2021). [61]T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object Detection", 2018. [Online]. Available: arXiv:1708.02002. [62]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision", Proc. CVPR, pp. 2818-2826, 2016, 10.1109/CVPR.2016.308. [63]F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions", Proc. CVPR, pp. 1800-1807, 2017, 10.1109/CVPR.2017.195. [64]M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", Proc. CVPR, pp. 4510-4520, 2018, 10.1109/CVPR.2018.00474. [65]K. Nakajima, T. Tamura and H. Miike, "Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique", Med. Eng. Phys., vol. 18, pp. 365-372, Jul. 1996, 10.1016/1350-4533(95)00066-6. [66]T. Vandenberk et al., "Clinical Validation of Heart Rate Apps: Mixed-Methods Evaluation Study", JMIR mHealth uHealth, vol. 5, no.8, pp. e129, Aug. 2017, 10.2196/mhealth.7254. [67]R. Shriram, A. Wakankar, N. Daimiwal and D. Ramdasi, "Continuous cuffless blood pressure monitoring based on PTT", Proc. ICBBT, pp. 51-55, 2010, 10.1109/ICBBT.2010.5479013. [68]A. Rasool, M. Rafiq, A. Nasir and F. M. Kashif, "Continuous and Noninvasive Blood Pressure Estimation by Two-Sensor Measurement of Pulse Transit Time", Proc. ICET, pp. 1-5, 2018, 10.1109/ICET.2018.8603612. [69]W. Lin, H. Wang, O. W. Samuel and G. Li, "Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation", Proc. EMBC, pp. 738-741, 2017, 10.1109/EMBC.2017.8036930. [70]X. Ding, B. P. Yan, Y. -T. Zhang, J. Liu, N. Zhao and H. K. Tsang, "Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation", Sci. Rep., vol. 7, pp. 11554, 2017, 10.1038/s41598-017-11507-3. [71]K. J. B. Noche, J. F. Villaverde and J. Lazaro, "Portable non-invasive blood pressure measurement using pulse transmit time", Proc. HNICEM, pp. 1-4, 2017, 10.1109/HNICEM.2017.8269546. [72]J. -Q. Li et al., "Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals", IEEE J. Transl. Eng. Health Med., vol. 6, pp. 1-14, 2018, 10.1109/JTEHM.2017.2788885. [73]D. B. McCombie, A. T. Reisner and H. H. Asada, "Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics", Proc. EMBS, pp. 3521-3524, 2006, 10.1109/IEMBS.2006.260590. [74]L. Peter, N. Noury and M. Cerny, "A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?", IRBM, vol. 35, no. 5, pp. 271-282, Oct. 2014, 10.1016/j.irbm.2014.07.002. [75]D. DeMers and D. Wachs, "Physiology mean arterial pressure", in StatPearls [Internet], Treasure Island, FL, USA: StatPearls Publishing, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538226/. [76]G. Yadav, S. Maheshwari and A. Agarwal, "Contrast limited adaptive histogram equalization based enhancement for real time video system", Proc. ICACCI, pp. 2392-2397, 2014, 10.1109/ICACCI.2014.6968381. [77]C. -T. Yen and J. -D. Lin, "Human body activity recognition using wearable inertial sensors integrated with a feature extraction-based machine-learning classification algorithm", Proc. Inst. Mech. Eng. B: J. Eng. Manuf., pp. 095440542093789, 2020, 10.1177/0954405420937894. [78]C. -T. Yen, S. -N. Chang and C. Y. Cai, "Development of a Continuous Blood Pressure Measurement and Cardiovascular Multi-Indicator Platform for Asian Populations by Using a Back Propagation Neural Network and Dual Photoplethysmography Sensor Signal Acquisition Technology", J. Nanomater., vol. 2021, 2021, 10.1155/2021/6613817. [79]A. E. W. Johnson et al., "MIMIC-III, a freely accessible critical care database", Sci. Data, vol. 3, 2016, 10.1038/sdata.2016.35. [80]A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals", Circulation, vol. 101, no. 23, pp. E215-E220, Jun. 2000, 10.1161/01.cir.101.23.e215. [81]T. Pollard et al., "MIT-LCP/mimic-code: MIMIC-III v1.4 (v1.4)", Zenodo, Jul. 2017, 10.5281/zenodo.821872.
|