|
[1]R. Das, K. Adhikary, S. Ray, “The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering,” Applied Surface Science, vol. 253, pp. 6068–6073, 2007. [2]D. G. Kim, S. Lee, G. H. Lee, S. C. Kwon, “Effects of hydrogen gas on properties of tin-doped indium oxide films deposited by radio frequency magnetron sputtering method,” Thin Solid Films, vol. 515, pp. 6949–6952, 2007. [3]D. Qiu, W. Duan, A. Lambertz, K. Bittkau, K. Qiu, U. Rau, K. Ding, “Effect of oxygen and hydrogen flow ratio on indium tin oxide films in rear-junction silicon heterojunction solar cells,” Solar Energy, vol. 231, pp. 578–585, 2022. [4]K. Zhang, F. Zhu, C. H. A. Huan, A. T. S. Wee, “Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method,” Journal of Applied Physics, vol. 86, pp. 974–979, 1999. [5]K. Zhang, F. Zhu, C. H. A. Huan, A. T. S. Wee, “Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature,” Thin Solid Films, vol. 376 pp. 255–263, 2000. [6]S. Luo, K. Okada, S. Kohiki, F. Tsutsui, H. Shimooka, F. Shoji, “Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments,” Materials Letters, vol. 63, pp. 641–643, 2009. [7]E. Aperathitisa, M. Bender, V. Cimalla, G. Ecke, M. Modreanu, “Properties of rf-sputtered indium–tin-oxynitride thin films,” Journal of Applied Physics, vol. 94, pp. 1258-1265, 2003. [8]K. C. Chang, T. M. Tsai, T. C. Chang, R. Zhang, K. H. Chen, J. H. Chen, M. C. Chen, H. C. Huang, W. Zhang, C. Y. Lin, Y. T. Tseng, H. C. Lin, J. C. Zheng, S. M. Sze, “Improvement of resistive switching characteristic in silicon oxide-based RRAM through hydride-oxidation on indium tin oxide electrode by supercritical CO2 fluid,” IEEE Electron Device Letters, vol. 36, pp. 558–560, 2015. [9]E. C. C. Souza, J. F. Q. Rey, E. N. S. Muccillo, “Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles,” Applied Surface Science, vol. 255, pp. 3779–3786, 2009. [10]V. Senthilkumar, K. Senthil, P. Vickraman, “Microstructural, electrical and optical properties of indium tin oxide (ITO) nanoparticles synthesized by co-precipitation method,” Materials Research Bulletin, vol. 47, pp. 1051–1056, 2012. [11]J. Henry, J. Livingstone, “ITO film analyses by FTIR,” Infrared Physics Technology, vol. 36, pp. 779–784, 1995. [12]E. S. Mirza, B. Topuz, “Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation,” Separation and Purification Technology, vol. 280, p. 119801, 2022. [13]C. S. Moon, J. G. Han, “Low temperature synthesis of ITO thin film on polymer in Ar/H2 plasma by pulsed DC magnetron sputtering,” Thin Solid Films, vol. 516, pp. 6560–6564, 2008. [14]M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, J. M. Pearce, “Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films,” AIP Advances, vol. 5, p. 017128, 2015. [15]H. S. Das, R. Das, G. Roymahapatra, S. K. Maity, P. K. Nandi, “Influence of hydrogen on rf-magnetron sputtered ITO films and post hydrogen plasma treatment,” Indian Chemical Society, Vol. 97, pp. 2657–2665, 2020. [16]K. U. Ritzau, T. Behrendt, D. Palaferri, M. Bivour, M. Hermle, “Hydrogen doping of indium tin oxide due to thermal treatment of hetero-junction solar cells,” Thin Solid Films, vol. 599, pp. 161–165, 2016. [17]H. Jiang, X. Yang, Z. Wen, K. Ge, F. Li, J. Chen, Y. Xu, D. Song, J. Chen, “Considerably improved photovoltaic performances of ITO/Si heterojunction solar cells by incorporating hydrogen into near-interface region,” IEEE Journal of Photovoltaics, Vol. 12, pp. 1102–1108, 2022. [18]L. Á. Fraga, F. J. Villacorta, J. S. Marcos1, A. D. Andrés, C. Prieto, “Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: optical and electrical properties variation with the H2-Ar sputtering gas mixture,” Applied Surface Science, vol. 344, pp. 217–222, 2015. [19]S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy Environmental Science, vol 9, pp. 81-88, 2016. [20]Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R. Catchpole, K. J. Weber, “Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency,” Energy Environmental Science, vol.10, p.1039, 2017. [21]S. Akhil, S. Akash, A. Pasha, B. Kulkarni, M. Jalalah, M. Alsaiari, F. A. Harraz, R. G. Balakrishna, “Review on perovskite silicon tandem solar cells: status and prospects 2T, 3T and 4T for real world conditions,” Materials & Design, vol. 211, p. 110138, 2021. [22]B. Chen, N. Ren, Y. Li, L. Yan, S. Mazumdar, Y. Zhao, X. Zhang, “Insights into the development of monolithic perovskite/silicon tandem solar cells,” Advanced Energy Materials, vol. 12, p. 203628, 2022. [23]C. Li, Y. Wang, W. C. H. Choy, “Efficient interconnection in perovskite tandem solar cells,” Small Methods, vol. 4, p. 2000093, 2020. [24]M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, “Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency,” Advanced Energy Materials, vol. 10, p. 1904102, 2022. [25]T. Leijtens, K. A. Bush, R. Prasanna, M. D. McGehee, “Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors,” Nature Energy, vol. 3, pp. 828–838, 2018. [26]L. Yan, C. Han, B. Shi, Y. Zhao, X. Zhang, “Interconnecting layers of different crystalline silicon bottom cells in monolithic perovskite/silicon tandem solar cells,” Superlattices and Microstructures, vol. 151, p. 106811, 2021. [27]S. Zhu, X. Yao, Q. Ren, C. C. Zheng, S. Li, Y. Tong, B. Shi, S. Guo, L. Fan, H. Ren, C. Wei, B. Li, Y. Ding, Q. Huang, Y. L. Li, Y. Zhao, X. Zhang, “Transparent electrode for monolithic perovskite/silicon-heterojunction two terminal tandem solar cells,” Nano Energy, vol. 45, pp. 280–286, 2018. [28]D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbuhler, M. Despeisse, A. H. Wyser, S. Nicolay, C. Ballif, “ITO/MoOX/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration,” IEEE Journal of Photovoltaics, vol. 7, pp. 1584–1590, 2017. [29]J. Geissbuhler, J. Werner, S. M. Nicolas, L. Barraud, A. H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, C. Ballif, “22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector,” Applied Physics Letters, vol. 107, p. 081601, 2015. [30]S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, D. Li, “Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOX/metal contacts,” RRL Solar, vol. 3, p. 1900274, 2019. [31]M. Rouhania, Y. L. Foob, J. Hobleya, J. Pana, G. S. Subramaniana, X. Yuc, A. Rusydic, S. Gorelika “Photochromism of amorphous molybdenum oxide films with different initial Mo5+ relative concentrations,” Applied Surface Science, vol. 273, pp. 150–158, 2013. [32]C. L. Cheng, C. C. Liu, Y. S. Chiu, P. W. Chen, Z. Y. Liu, “Air ambient and composition effects of molybdenum oxides on photovoltaic and physical characteristics of screen-printed mono-crystalline silicon solar cells,” Materials Letters, vol. 234, pp. 319-322, 2019. [33]C. Yu, S. Xu, J. Yao, S. Han, “Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts” Crystals, vol. 8, p. 430, 2018.
|