一、中文文獻
1.吳長閎,2017,股票波動性與網路搜索量之關係,逢甲大學財務金融學系,碩士論文。2.洪文琳,2013,搜尋量指數與臺灣股票流動性與報酬率之研究,國立中山大學財務管理學系, 碩士論文。
3.陳怡靜,2014,谷歌搜尋引擎與臺灣股市交易活動之關聯性,國立高雄第一科技大學財務金融學系,碩士論文。二、英文文獻
1.Alexander, C., (2008), “Market Risk Analysis”, Volume I. London: Wiley and Sons in press.
2.Bijl, L., Kringhaug, G., Molnár, P., Sandvik, E., (2016), “Google searches and stock returns”, International Review of Financial Analysis, 45, 150–156.
3.Bank, M., Larch, M. and Peter, G., (2011), “Google search volume and its influence on liquidity and returns of German stocks”, Financial Markets and Portfolio Management, 25, 239-264.
4.Beracha, E., Wintoki, M.B, (2013), “Forecasting residential real estate price changes from online search activity”, Journal of Real Estate Research, 35, 283-312.
5.Carneiro, H.A., Mylonakis, E., (2009), “Google Trends: a web-based tool for re-al-time surveillance of disease outbreaks”, Clinical Infectious Diseases, 49, 1557-1564.
6.Campbell, J.Y., Grossman, S.J., and Wang, J., (1993), “Trading volume and serial correlation in stock returns”, Quarterly Journal of Economics, 108, 905-939.
7.Corsi, F., ( 2009), “A simple approximate long-memory model of realized volatility”, Journal of Financial Econometrics, 7, 174-196.
8.Choi, H. and Varian, H., (2012), “Predicting the present with google trends”, Eco-nomic Record, 888, 2-9.
9.Da, Z., Engelberg, J., and Gao, P., (2011a), “In search of attention”, Journal of Fi-nance, 66, 1461–1499.
10.Da, Z., Engelberg, J., and Gao, P., (2011b), “The sum of all fears : Investor senti-ment and asset prices”, The Review of Financial Studies, 28, 1-32.
11.Dimpfl, T.and Jank, S., (2016), “Can internet search queries help to predict stock market volatility? ” European Financial Management, 22, 171-192.
12.Ginsberg, J., Mohebbi M.H., Patel, R.S., Brammer, L., Smolinski, M.S. and Bril-liant, L., (2009), “Detecting influenza epidemics using search en¬gine”, Nature, 457, 1012-1014.
13.Gwilyma, O.A., Hasanb,I., Wang, Q., Xiea, R., (2012), “In search of concepts: the effects of speculative demand on stock returns”, European Financial Management, 22, 427-499.
14.Joseph, K., Wintoki, M.B.and Zhang, Z., (2011), “Forecasting abnormal stock re-turns and trading volume using investor sentiment: Evi¬dence from online search”, International Journal of Forecasting, 27, 1116–1127.
15.Kristoufek, L., (2015), “Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components” , Physica A: Statistical Mechanics and its Ap-plications , 428, 194-205.
16.Osborne , M.F.M., (1962), “Periodic structure in the brownian motion of stock prices”, Operations Research, 10, 345-379.
17.Preis, T., Reith, D. and Stanley, H.E., (2010), “Complex dynamics of our economic life on different scales: insights from search engine query data ”, Philosophical Transactions of the Royal Society of Lon¬don A: Mathematical, Physical and Engi-neering Sciences , 368, 5707-5719.
18.Preis, T., Moat, H.S., and Stanley, H.E., (2013), “Quantifying trading behavior in financial markets using google trends”, Scientific Re¬ports, 3, srep01684.
19.Poon, S., H.andGranger, C., W., (2003), “Forecasting volatility in financial markets: A review”, Journal of Economic Literature, 41, 478-539.
20.Tantaopas, P., Padungsaksawasdi, C. and Treepongkaruna, S., (2016), “Attention effect via internet search intensity in Asia-Pacific stock markets”, Pacific-Basin Finance Journal, 38, 107-124.
21.Vlastakis, N., Markellos, R.N., (2012), “Information demand and stock market volatility” , Journal of Banking and Finance, 36, 1808-1821.
22.Venkataraman, M., Panchapagesan, V., Jalan, E., (2018), “Does internet search in-tensity predict house prices in emerging markets? a case of India”, Property Management , 36, 103-118.
23.Wachtel, S.B., (1942), “Certain observations on seasonal movements in stock pric-es”, The Journal of Business, 15, 184-193.