|
[1]S. Nalley, A. LaRose, U.S. Energy Information Administration, International Energy Outlook 2021 (IEO2021) 1-21. [2]Ramchandra G. Patil, Aditi N. Yerudkar, Amruta R. Joglekar, Sudhir V. Panse, Vishwanath H. Dalvi*, Ganapati S. Shankarling, Vineeta D. Deshpande, Arun K. Nayak and Jyeshtharaj B. Joshi*, Transition metal compounds as solar selective material, Rev Chem Eng (2021) 1-34. [3]B. Liu, C. Wang, S. Bazri, et al., Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films, Powder Technology 377 (2021) 939-957. [4]W. Wang, H. Wen, X. Huan, J. Su, W. Wang, J. Shi, and C. Wang*, One-Step Reactive Sputtering of Novel MoOx Nanogradient Absorber for Flexible and Wearable Personal Passive Heating, Sol. RRL 4 (2020) 2000055. [5]A. AbdellA˚ui, L. Martin, and A. Donnadieu, Structure and optical properties of MoO3 thin films prepared by chemical vapor deposition, Phys. Stat. Sol. 109 (1988) 455-462. [6]M. A. Quevedo-Lopez, R. F. Reidy, R. A. Orozco-Teran, O. Mendoza- Gonzalez, and R. Ramirez-Bon, Enhancement of the photochromic and thermochromic properties of molybde-num oxide thin films by a cadmium sulfide underlayer, J. Mater. Sci. Mater. Elect. 11 (2000) 151-155. [7]A. M. Anderson, C. G. Granquvist, and J. R. Stevens, Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window, Appl. Opt. 28 (1989) 3295-3302. [8]C. G. Granqvist, Electrochromism and smart window design, Sol. Stat. Ion 53-56 (1992) 479-489. [9]D. Mutschall, K. Holzner, and E. Obermeier, Sputtered molybdenum oxide thin films for NH3 detection, Sens. Actuators B 36 (1996) 320-324. [10]M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, M. Sacerdoti, and G. Sberveglieri, Characterization of a molybdenum oxide sputtered thin film as a gas sensor, Thin Sol. Films 307 (1997) 148-151. [11]H. Al-Kandari, F. Al-Khorafi, H. Belatel, and A. Katrib, The bifunctional catalytic properties of a partially H2-reduced MoO3, Catal. Commun. 5 (2004) 225-229. [12]M. Hashimoto, S. Watanuki, N. Koshida, M. Komuro, and N. Atoda, Dual function of thin MoO3 and WO3 films as negative and positive resists for focused ion beam lithography, Jpn. J. Appl. Phys. Part I 35 (6A) 3665-3669. [13]R. Thangappan, R. Dhinesh Kumar, R. Jayavel, Facile Synthesis and Characterization of Molybdenum Oxide (MoO3) Nanofibers and Submicron Rods by Electrospinning Technique for Potential Application in Photocatalytic Activity, Journal of Cluster Science 33 (2022) 2209-2214. [14]R. Aoba, S. A. Abdullahi, J. Sackey, M. Nkosi, B. M. Mothudi, Z. Y. Nuru, M. Maaza, Ultrasound-assisted wet chemical synthesis of texturized Mo/MoO3 spectrally selective solar absorber coatings, Thin Solid Films 735 (2021) 138892. [15]Y. Wu, C. Wang, Y. Sun, Y. Xue, Y. Ning, W. Wang, S. Zhao, E. Tomasella, A. Bousquet, Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings, Solar Energy Materials and Solar Cells 134 (2015) 373-380. [16]F. Ca´rdenas-Lizana*, D. Lamey, L. Kiwi-Minsker, and M. A. Keane, Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation, Journal of Materials Science 53 (2018) 6707-6718. [17]Dr. Sunil Pandey, K. H. Sharma, A. K. Sharma, N. Yowan, Dr. Da-Ren Hang, Dr. Hui-Fen Wu, Comparative Photothermal Performance among Various Sub-Stoichiometric 2D Oxygen-Deficient, Molybdenum Oxide Nanoflakes and In Vivo Toxicity, Chemistry A European Journal 24 (2018) 7417-7427. [18]Y. Li, C. Lin, J. Huang, C. Chi and B. Huang, Spectrally Selective Absorbers/Emitters for Solar Steam Generation and Radiative Cooling-Enabled Atmospheric Water Harvesting, Global Challenges 5 (2020) 2000058. [19]D. Zhu, S. Zhao*, Chromaticity and optical properties of colored and black solar-thermal absorbing coatings, Solar Energy Materials & Solar Cells 94 (2010) 1630-1635. [20]D. Zhu, F. Mao, S. Zhao, The influence of oxygen in TiAlOxNy on the optical properties of colored solar-absorbing coatings, Solar Energy Materials and Solar Cells 98 (2012) 179-184. [21]A. J. Perry, A. W. Baouchi, J. H. Petersen, S. D. Pozder , Crystal structure of molybdenum nitride films made by reactive cathodic arc evaporation, Surface and Coatings Technology 54-55 (1992) 261-265. [22]M. Mazur, D. Wojcieszak, A. Wiatrowski, D. Kaczmarek, A. Luban'ska, J. Domaradzki, P. Mazur, M. Kalisz, Analysis of amorphous tungsten oxide thin films deposited by magnetron sputtering for application in transparent electronics, Applied Surface Science 570 (2021) 151151. [23]N. Makeswaran, C. Orozco, Anil K. Battu, Eva Deemer and C. V. Ramana,* Structural, Optical and Mechanical Properties of Nanocrystalline Molybdenum Thin Films Deposited under Variable Substrate Temperature, Materials 15 (2022) 754. [24]G. Morales-Luna,* and M. Morales-Luna,* Extinction Coefficient Modulation of MoO3 Films Doped with Plasmonic Nanoparticles: From an Effective Medium Theory Description, Nanomaterials 11 (2021) 2050. [25]Donald M. Mattox, Physical vapor deposition (PVD) processes, Metal Finishing 100 (2002) 394-408. [26]J. Musil, P. Baroch, J. Vlček, K. H. Nam, J.G. Han, Reactive magnetron sputtering of thin films: present status and trends, Thin Solid Films 475 (2005) 208-218. [27]S. Venkataraj, D. Severin, S. H. Mohamed, J. Ngaruiya, O. Kappertz, M. Wuttig, Towards understanding the superior properties of transition metal oxynitrides prepared by reactive DC magnetron sputtering, Thin Solid Films 502 (2006) 228-234. [28]L. Stoeber, J. P. Konrath and V. Haberl, F. Patocka, M. Schneider and U. Schmid, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, J. Vac. Sci. Techol. A 34 (2016) 021513. [29]L. L. Chang and B. Phillips, Phase relations in refractory metal-oxygen systems, Journal of the American Ceramic Society 52 (1969) 527-533. [30]A. Domínguez, C. Ramos, A. Dutt, G. Santana*, Yu. Kudriavtsev, O. de Melo*, The role of reductive and oxidative annealing processes in the phase composition and electrical conductivity of molybdenum oxides, Materials Letters 318 (2022) 132171. [31]I. Alves de Castro, and K. Kalantar-zadeh*, Molybdenum Oxides-From Fundamentals to Functionality, Adv. Mater. 29 (2017) 1701619. [32]J. M. Pachlhofer, C. Jachs, R. Franz, E. Franzke, H. Köstenbauer, J. Winkler, andC. Mitterer, Structure evolution in reactively sputtered molybdenum oxide thin films, Vacuum 131 (2016) 246-251. [33]J. Park, YC. Kang, Surface characterization of Mo oxynitride films obtained by RF sputtering at various N2 ratios, Met. Mater. Int. 19 (2013) 55-60. [34]I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. Jauberteau, P. Carles, and T. Merle-Méjean, Molybdenum nitride films: Crystalstructures, synthesis, mechanical, electrical and some other properties, Coatings 5 (2015) 656-687. [35]W. Tillmann, D. Kokalj*, D. Stangier, Impact of structure on mechanical properties and oxidation behavior of magnetron sputtered cubic and hexagonal MoNx thin films, Applied Surface Science Advances 5 (2021) 100119. [36]J. Wang*, P. Munroe, Z. Zhou, Z. Xie, Nanostructured molybdenum nitride-based coatings: Effect of nitrogen concentration onmicrostructure and mechanical properties, Thin Solid Films 682 (2019) 82-92. [37]R. S. Patil, M. D. Uplane, P. S. Patil, Structural and optical properties of electrodeposited molybdenum oxide thin films, Applied Surface Science 252 (2006) 8050-5056. [38]A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B.Khelifa, R. Desfeux, Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spraypyrolysis technique, Materials Science and Engineering B 97 (2003) 5-8. [39]V. Nirupama, K. R. Gunasekhar, B. Sreedhar, S. Uthanna*, Effect of oxygen parial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films, Current Applied Physics 10 (2010) 272-278. [40]B. E. Sernelious, K. F. Berggren, Z. C. Jin, I. Hambreg, C. G.Granqvist, Band gap tailoring of ZnO by means of heavy A1 doping, Phys. Rev. B 37 (1998) 10244. [41]N. Ahmed, A. Majid, M. A. Khan, M. Rashid, Z. A. Umar, M. A. Baig, Synthesis and characterization of Zn/ZnO microspheres on in dented sites of silicon substrate, Materials Science-Poland 36 (2018) 501-508. [42]J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin 3 (1968) 37-46. [43]S. Subbarayudu, V. Madhavi, and S. Uthanna, Growth of MoO3 Films by RF Magnetron Sputtering: Studies on the Structural, Optical, and Electrochromic Properties, Hindawi Publishing Corporation ISRN Condensed Matter Physics (2013) 806374. [44]Srinivasa Rao K., Rajini Kanth B., and Mukhopadhyay P. K., Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO3 films,Appl. Phys. A 96 (2009) 985-990. [45]V. Nirupama, Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films, Current Applied Physics 10 (2010) 272-278. [46]J.A. Hofer*, S. Bengio, G. Rozas, P.D. Pe'rez, M. Sirena, S. Sua'rez, N. Haberkorn, Compositional effects on the electrical properties of extremely disordered molybdenum oxynitrides thin films, Materials Chemistry and Physics 242 (2020) 122075. [47]N. Masatoshi*, G. Yosuke, U. Osamu, O. Shinzo, TPD and XRD studies of molybdenum nitride and its activity forhydrodenitrogenation of carbazole, Catalysis Today 43 (1998) 249-259. [48]A. Dominguez, A. Dutt, O. de Melo, L. Huerta, and G. Santana*, Molybdenum oxide 2-D flakes: role of thickness and annealing treament on the optoelectronic properties of the material, J. Mater. Sci. 53 (2018) 6147-6156. [49]W. Liu, J. Cai, B. Huang, X. Zhang* and S. Lin*, Synergistic catalytic effects of MoO2 and Vulcan carbon on the oxygen reduction reaction, New J. Chem. 45 (2021) 2775. [50]F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A. R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivière, Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage, Thin Solid Films 469-470 (2004) 11-17. [51]L. Kumari, Y.R. Ma, C.C. Tsai, Y.W. Lin, S.Y. Wu, K.W. Cheng and Y. Liou, | X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods, Nanotechnology 18 (2007) 115717. [52]X.J. Han, P.X. Sun, W.J. Pan, L.J. Chen, Z.J. Chen, Q. Zhang, J. Wang and C. Yang, Porous multi-layer MoO2/β-MnO2 composite cathode for phosphorylated glucose fuel cell, Journal of Solid State Electrochemistry 25 (2021) 1861-1869. [53]C.L. Miroslava and C.L. Marco, Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses, Crystals 10 (2020) 629. [54]R. Jon, M. Kenrick, C.L. Marco, C.L. Santiago, A. Gullermo, Influence of oxygen pressure on the fs laser-induced oxidation of molybdenum thin films, Optical Materials Express 8 (2018) 581-596. [55]B. Lafuente, R. T. Downs, H. Yang, N. Stone, The power ofdatabases: the RRUFF project. In: Highlights in MineralogicalCrystallography, T Armbruster and R M Danisi, eds. Berlin, Germany, W. De Gruyter, (2015) pp 1-30. [56]R. Jon, M. Kenrick, C.L. Marco, C.L. Santiago, A. Gullermo, Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing, Applied Surface Science 394 (2017) 414-424. [57]Jwal Doctor, Palak Thakkar, Mitul Prajapati, Nrupresh Patel, Priti J. Mehta, Non-Destructive Raman Spectroscopic Method For Estimation Of Montelukast From Tablet Dosages Form, International Journal of Pharmacy and Pharmaceutical Sciences 9 (2017) 161-165. [58]T. Hasan, J. Maasoumeh*, F. Fahimeh, R. Abdolreza*, and F. Alireza, A Cooperative Effect in a Novel Bimetallic Mo-V Nanocomplex Catalyzed Selective Aerobic C-H Oxidation, ACS Omega 4 (2019) 3601-3610. [59]K. Hadi, K. N. Azar, F. M. Mehdi, B. A. Reza, A. R. Hadi and S. M. Khurram, Oxovanadium and dioxomolybdenum complexes: synthesis, crystal structure, spectroscopic characterization and applications as homogeneous catalysts in sulfoxidation, Journal of Coordination Chemistry 74 (2021) 9-10. [60]D. Nijole*, S. Dovile, G. Asta, Morphological, structural and optical properties of MoO2 films electrodeposited on SnO2|glass plate, Cent. Eur. J. Chem. 10 (2012) 1106-1118. [61]X.J. Han, P.X. Sun, W.J. Pan, L.J. Chen, Z.J. Chen, Q. Zhang, J. Wang and C. Yang, Porous multi-layer MoO2/β-MnO2 composite cathode for phosphorylated glucose fuel cell, Journal of Solid State Electrochemistry 25 (2021) 1861-1869. [62]J. Rajeswari, P.S. Kishore, B. Vishwanathan and T. K. Varadarajan, One-dimensional MoO2 nanorods for supercapacitor applications, Electrochem. Comm. 11 (2009) 575. [63]T. H. Chiang and C. Y. Hung, The Synthesis of α-MoO3 by Ethylene Glycol, Materials 6 (2013) 4625. [64]M. Nallappan, M. Gopalan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices, Applied Surface Science 416 (2017) 461-469. [65]L. J. Bian, H. L. He, X. X. Liu, Self-doped polyaniline/molybdenum oxide composite nanorods for supercapacitor, RSC Advances 92 (2015) 74986-75837. [66]C.V. Subba Reddy, Edwin H. Walker Jr., W. Chen and S. Mho, Hydrothermal Synthesis of MoO3 nanobelts utilizing poly (ethylene glycol), J. Power Sources 183 (2008) 333. [67]N. Fang, Y. M. Ji, C. Y. Li, Y. Y. Wu, C. G. Ma, H. L. Liu* and M. X. Li*, Synthesis and adsorption properties of [Cu(L)2(H2O)]H2[Cu(L)2(P2Mo5O23)]·4H2O/Fe3O4 nanocomposites, RSC Adv. 7 (2017) 25325-25333. [68]K. S. Saranya, Akshay K.K. Padinjareveetil, Vinod V. T. Padil, P. Rajendra, G. Bini, S. Chandra, Miroslav Černík, Rajender S. Varma, Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic efects and catalytic efcacy, towards reduction of p‑nitrophenol, Clean Technologies and Environmental Policy 21 (2019) 1549-1561. [69]Ch. V. Subba Reddy*, Edwin H. Walker Jr., W. Chen, I. M. Shun, Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol), Ournal of Power Sources 183 (2008) 330-333. [70]K. S. Sapan, S. Dutta, Md. Razib Khan, M. S. Manir, S. Dutta, A. A. Mortuza, R. Sultana and M. A. Hakim, Characterization and Antibacterial Activity Study of Hydrothermally Synthesized h-MoO3 Nanorods, and α-MoO3 Nanoplates, BioNanoScience 9 (2019) 873-882. [71]A. Chithambararaj, N. S. Sanjini, A. Chandra Bose* and S. Velmathi, Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation, Catalysis Science & Technology 5 (2013) 1405-1414. [72]Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou* and J. J. Zhu*, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties, CrystEngComm 12 (2010) 3740-3747. [73]P. Wongkrua, T. Thongtem and S. Thongtem, Synthesis of h- and α -MoO3 by refluxing and calcination combination: phase andmorphology transformation, photocatalysis, and photosensitization, Journal of Nanomaterials, 2013. [74]G. S. Zakharova, C. Täschner, V. L. Volkov, I. Hellmann, R. Klingeler, A. Leonhardt and B. Büchner, MoO3-δ nanorods: synthesis, characterization and magnetic properties, Solid State Sciences 9 (2011) 1028-1032. [75]J. Song, X. Ni, L. Geo and H. Zheng, Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensionalstructure, Mater. Chem. Phys. 102 (2007) 245-248. [76]Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou and J. J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties, CrystEngComm 12 (2011) 3740-3747. [77]G. Gordillo, F. Mesa and C. Calderon, Electrical and Morphological Properties of Low Resistivity Mo thin Films Prepared by Magnetron Sputtering, Brazilian Journal of Physics 36 (2006) 982-986. [78]S. Y. Chun, Changes of Crystal Structure and Microstructure of MoN Coatings in Accordance with Inductively Coupled Plasma Power, Coatings 11 (2021) 1351. [79]D. Wu*, R. Shen*, R. Yang, W. Ji, M. Jiang, W. Ding & L. Peng, Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries, Scientific Reports 7 (2017) 44697. [80]A. Hojabri, F. Hajakbari, A. Emami Meibodi, Structural and optical properties of nanocrystalline α-MoO3 thin films prepared at different annealing temperatures, J. Theor. Appl. Phys. (2015) 9 : 67-73.
|