[1]Y. Hu, Z. Wang, “Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors”,Nano Energy, vol. 14 , pp. 3-14, May 2015.
[2]F. Dang, K.I. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, “Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method”, CrystEngComm, pp. 3878-3883, 2011.
[3]S. Joshi, M. Nayak, K. Rajanna, ”Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance”, ACS Appl. Mater. Interfaces, pp. 7108-7116, 2014
[4]J. Lei, B. Yin, Y. Qiu, H. Zhang, Y. Chang, Y. Luo, Y. Zhao, J. Ji, L. Hu “Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure” J. Mater. Sci. - Mater. Electron., 27 , pp. 1983-1987, 2016
[5]Y. Su, J. Chen, Z. Wu, Y. Jiang, “Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing”, Appl. Phys. Lett., 106 (1), Article 013114, (2015).
[6]Y. Su, et al, “Enhancing responsivity of ZnO nanowire based photodetectors by piezo-phototronic effect”, Sens. Actuat. A Phys. (2016)
[7]Y. Su, et al, “Novel high-performance self-powered humidity detection enabled by triboelectric effect”, Sens. Actuat. B. Chem. (2017)
[8]Y. Su, et al, “Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination”, Nano Energy (2018)
[9]A. Khan, Z. Abas, H. Soo Kim, I.K. Oh, “Piezoelectric thin films: An integrated review of transducers and energy harvesting”, Smart Mater. Struct., 25 (5) (2016)
[10]Z.L. Wang, “Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields”, Nano Energy, pp. 477-483, (2018)
[11]M. Defosseux, M. Allain, E. Defay, S. Basrour, “Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a CMOS compatible process”, Sensor. Actuat. A-Phys., pp. 489-494, 2012
[12]C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou, “AlN piezoelectric thin films for energy harvesting and acoustic devices”, Nano Energy, pp. 146-161, 2018
[13]B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, “Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting”, Appl. Energy, pp. 865-874, 2018
[14]C. Kumar, A. Gaur, S.K. Rai, P. Maiti, “Piezo devices using poly (vinylidene fluoride)/reduced graphene oxide hybrid for energy harvesting”, Nano-Struct. Nano-Obj., pp. 174-181, 2017
[15]J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, “Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting”, Nano Energy (2018).
[16]D. Yang, Y. Qiu, Q. Jiang, Z. Guo, W. Song, J. Xu, Y. Zong, Q. Feng, X. Sun, “Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators”, Appl. Phys. Lett., Article 063901, 2017
[17]Z. Zhang, Y. Chen, J. Guo, “ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting”, E-Low-dimens. Sys. Nanostruct, pp. 212-218, 2019.
[18]X. Zhao, S. Li, C. Ai, H. Liu, D. Wen, “Fabrication and characterization of the Li-doped ZnO thin films piezoelectric energy harvester with multi-resonant frequencies”, Micromachines, p. 212, 2019.
[19]Y. Yang, et al., “Pyroelectric nanogenerators for harvesting thermoelectric energy”, Nano Lett., pp. 2833-2838, 2012
[20]Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 242–246, 2006.
[21]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science, 102–105, 2007
[22]L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions” Adv. Mater., vol. 15, no. 5, pp. 464-466, 2003.
[23]L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Chem., “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes” Mater. vol. 13, no. 12, pp.4395-4398, 2001.
[24]L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-Built Anisotropic MetalOxide Material: 3D Highly Oriented Microrod Array of ZnO” J. Phys.Chem.B, vol. 105, no. 17, pp.3350-3352, 2001.
[25]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions” Chem. Mater. vol. 17, no. 5, pp. 1001-1006, 2005.
[26]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. D.Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays” Angew. Chem.Int. vol. 42, no. 26, pp. 3031-3034, 2003.
[27]K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors thatgovern the deposition and morphology of thin films of ZnO from aqueous solution” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[28]Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez,H. Konishi and H. F. Xu, “Complex and oriented ZnO nanostructures,”Nature Materials, vol. 12, pp. 821-826, 2003.
[29]T.M. Zhao, Y.M. Fu, Y.Y. Zhao, L.L. Xing, X.Y. Xue, Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response, J. Alloys Compd, 571–576, 2015
[30]C. Moditswe, C.M. Muiva, A. Juma, Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis, Optik, 8317–8325, 2016
[31]Y.Q. Li, K. Yong, H.M. Xiao, W.J. Ma, G.L. Zhang, S.Y. Fu, Preparation and electrical properties of Ga-doped ZnO nanoparticles by a polymer pyrolysis method, Mater. Lett, 64, 1735–1737, 2010
[32]J.H. Lee, K.Y. Lee, B. Kumar, and S.W. Kim, Synthesis of Ga-Doped ZnO Nanorods Using an Aqueous Solution Method for a Piezoelectric Nanogenerator, J. Nanosci. Nanotechnol. 12, 3430–3433, 2012
[33]J. Guo, J. Zheng, X.Z. Song, K. Sun, Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method, Mater. Lett. 97, 34–36, 2013
[34]R. Wen, L. Wang, X. Wang, G.-H. Yue, Y. Chen, and D.-L. Peng, "Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films," Journal of Alloys and Compounds, vol. 508, pp. 370-374, 2010.
[35]《科學發展》,382期,72 ~ 75頁, 2004年10月
[36]G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu, L. Wang, et al., "Selectivity of quantum dot sensitized ZnO nanotube arrays for improved photocatalytic activity," Phys Chem Chem Phys, vol. 19, pp. 11366-11372, May 10 2017.
[37]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., "Room-Temperature Ultraviolet Nanowire Nanolasers," SCIENCE, vol. 292, pp. 1897-1899, 2001.
[38]S.-J. Chang, B.-G. Duan, C.-H. Hsiao, C.-W. Liu, and S.-J. Young, "UV Enhanced Emission Performance of Low Temperature Grown Ga-Doped ZnO Nanorods," IEEE Photonics Technology Letters, vol. 26, pp. 66-69, 2014.
[39]A. A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, and M. Taghizadeh, "Silver nanoparticles decorated carboxylate functionalized SiO 2 , New nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide," Electrochimica Acta, vol. 214, pp. 208-216, 2016.
[40]C.-L. Hsu, L.-F. Chang, and T.-J. Hsueh, "A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate," RSC Adv., vol. 6, pp. 74201-74208, 2016.
[41]B.-R. Huang, W.-C. Ke, Y.-H. Peng, and R.-H. Liou, "Low temperature annealing effect on photoresponse of the bilayer structures of ZnO nanorod/nanodiamond films based on ultraviolet photodetector," Thin Solid Films, vol. 605, pp. 243-247, 2016.
[42]J. Luo, A. Quan, C. Fu, and H. Li, "Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure," Journal of Alloys and Compounds, vol. 693, pp. 558-564, 2017.
[43]J. Wang, X. Wei, and P. Wangyang, "Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection," Nanoscale Res Lett, vol. 10, p. 461, Dec 2015.
[44]S. Jung and T. Ji, "ZnO Nanorod-Based Humidity Sensors With Fast Response," IEEE Electron Device Letters, vol. 35, pp. 960-962, 2014.
[45]趙偉迪,氧化鋅奈米線應用於發光二極體之研製,碩士論文。國立台灣師範大學機電科技研究所,2009[46]M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, "Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, pp. 963-970, 2001.
[47]V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V. Costa, et al., "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature," Thin Solid Films, vol. 427, pp. 401-405, 2003.
[48]K. C. Park, D. Y. Ma, and K. H. Kim, "The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering," Thin Solid Films, vol. 305, pp. 210-219, 1997.
[49]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[50]S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003.
[51]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, et al., "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature," Applied Physics Letters, vol. 85, pp. 2541-2543, 2004.
[52]S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci Technol Adv Mater, vol. 10, p. 013001, Feb 2009.
[53]B. Liu and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm," J. AM. CHEM. SOC., vol. 125, pp. 4430-4431, 2003.
[54]K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[55]Y. Tak and K. Yong, "Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method," J. Phys. Chem. B, vol. 109, pp. 19263-19269, 2005.
[56]Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions," Chem. Mater., vol. 17, pp. 1001-1006, 2005.
[57]K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[58]Z. Fan and J. G. Lu, "Zinc Oxide Nanostructures Synthesis and Properties," 2005.
[59]S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci Technol Adv Mater, vol. 10, p. 013001, Feb 2009.
[60]B. Liu and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm," J. AM. CHEM. SOC., vol. 125, pp. 4430-4431, 2003.
[61]H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process," J. Phys. Chem. B, vol. 108, 2004.
[62]J. I. A. G. U. O. Y. U and X. I. A. O. X. I. A. O. Y. U, "Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres," Environ. Sci. Technol., vol. 42, pp. 4902–4907, 2008.
[63]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djuris, C. C. Ling, C. D. Beling, et al., "Defects in ZnO Nanorods Prepared by a Hydrothermal Method," J. Phys. Chem. B, vol. 110, pp. 20865-20871, 2006.
[64]X. D. Yan, Z. W. Li, R. Q. Chen and W. Gao. 2008. Template Growth of ZnO Nanorods and Microrods with Controllable Densities. Crystals Growth Design. 8, 2406-2410.
[65]Ü. Özgür,Ya. I. Alivov, C. Liu, A. Teke,M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç(2005), “A comprehensive review of ZnO materials and devices”, APPLIED PHYSICS REVIEWS, Vol. 98, No. 041301.
[66]林凡,“產業用PEN(聚萘二甲酸乙二醇酯)纖維介紹, http://www.filaweaving.org.tw/file/B_F/456/131028220831.pdf.
[67]C.C. Yang, Y.K. Su, M.Y. Chuang, T.H. Kao, H.C. Yu, and C.H. Hsiao, The Effect of Ga Doping Concentration on the Low-Frequency Noise Characteristics and Photoresponse Properties of ZnO Nanorods-Based UV Photodetectors, IEEE J. Sel. Top. Quantum Electron. 21 (2015) 3800707.
[68]W. P. Mason. 1981. Piezoelectricity, its history and applications. The Journal of theAcoustical Society of America. 70, 1561.
[69]Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 5(6): p. 540-552, 2010.
[70]Z. L.Wang, J.H. Song ,”Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science,18, 312 , 242, 2006
[71]Z. L.Wang, “Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics”, Adv. Funct. Mater, 18 , 3553, 2008.
[72]Z. L. Wang, ”Nanogenerators for self-powered devices and systems” , Georgia Institute of Technology, SMARTech digital repository, 2011.
[73]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[74]S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003.
[75]K. Hassan and G.-S. Chung, "Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection," Sensors and Actuators B: Chemical, vol. 239, pp. 824-833, 2017
[76]F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, et al., "Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods," Sensors and Actuators B: Chemical, vol. 241, pp. 895-903, 2017.
[77]Field-emission scanning electron micros; National Chung Hsing University
[78]R. Shabannia, "Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate," Journal of Molecular Structure, vol. 1118, pp. 157-160, 2016.
[79]H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process," J. Phys. Chem. B, vol. 108, 2004.
[80]S. J. Young and L. T. Lai, "Field emission properties of ZnO nanosheets grown on a Si substrate," Microelectronic Engineering, vol. 148, pp. 40-43, 2015.
[81]L. Yi-Hsing, Y. Sheng-Joue, J. Liang-Wen, and C. Shoou-Jinn, "Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature," IEEE Transactions on Electron Devices, vol. 61, pp. 4192-4196, 2014.
[82]M. Ahmad, L. Gan, C. Pan, and J. Zhu, "Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres," Electrochimica Acta, vol. 55, pp. 6885-6891, 2010.
[83]M. Ahmad, L. Gan, C. Pan, and J. Zhu, "Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres," Electrochimica Acta, vol. 55, pp. 6885-6891, 2010.
[84]B. Khalfallah, F. Chaabouni, G. Schmerber, A. Dinia, and M. Abaab, "Investigation of physico-chemical properties of conductive Ga-doped ZnO thin films deposited on glass and silicon wafers by RF magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 75-85, 2016.
[85]J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden andJ. M. Jacobson, Nat. Mater. 10, 596, 2011.
[86]W. J. Park, H. S. Shin, B. D. Ahn, G. H. Kim and S. M. Lee,Appl. Phys. Lett., 93, 083508, 2008.
[87]J. Song and S. Lim, J. Phys. Chem. C, 111, 596–600, 2007.
[88]J. B. Cui, C. P. Daghlian, U. J. Gibson, R. P¨usche andP. Geithner, Appl. Phys. Lett., 97, 044315, 2005.
[89]姚潔宜 “低溫燒結氧化鋅奈米薄膜之特性研究”,國立臺北科技大學製造科技研究所,2004.
[90]Si Woo Kang, S. K. Mohanta, Young Yi Kim, and Hyung Koun Cho, “Realization of Vertically Well-Aligned ZnO:Ga Nanorods by Magnetron Sputtering and Their Field Emission Behavior”, Cryst. Growth Des. 8, 5, 1458–1460, 2008
[91]Q. Yang, W.H. Wang, S. Xu, and Z. L. Wang., “Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect. Nano Letters”, 11, 4012-4017, 2011.
[92]Y. Zhang and Z. L. Wang, “Theory of Piezo-Phototronics for Light-Emitting Diodes. Advanced Materials”, 24, 4712-4718, 2012.