|
參考文獻
[1] Mduduzi P. Mokoena, Cornelius A. Omatola, Ademola O. Olaniran. (2021). Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules, 26(22), 7055. [2] Mozzi F., Caballero B., Finglas P.M., Toldrá F.. (2016). Lactic Acid Bacteria. Encyclopedia of Food and Health, P.501-508. [3] Sarah Crowley, Jennifer Mahony, Douwe van Sinderen. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology, 33(2), P.93-109. [4] Parveen Kaur Sidhu, Kiran Nehra. (2019). Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science, 31(4), P.758-767. [5] Dicks L.M., Botes M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes, 1(1), P.11-29. [6] Zheng J., Wittouck S., Salvetti E., Franz C.M.A.P., Harris H.M.B., Mattarelli P., O'Toole P.W., Pot B., Vandamme P., Walter J., Watanabe K., Wuyts S., Felis G.E, Gänzle M.G., Lebeer S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol, 70(4), P.2782-2858. [7] Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., 49 Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., Sanders, M.E.. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol , 11, P.506–514. [8] AlKalbani, N.S., Turner, M.S., Ayyash, M.M. (2019). Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microb Cell Fact, 18, P.188. [9] Parvez S., Malik K.A., Kang S.Ah., Kim H.Y.. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6), P.1171–1185. [10] Jie Zhang, Yue Xiao, Hongchao Wang, Hao Zhang, Wei Chen, Wenwei Lu. (2023). Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiological Research, 274, 127432. [11] Lee Y.K., Lim C.Y., Teng W.L., Ouwehand A.C., Tuomola E.M., Salminen S. (2000). Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol, 66(9), P.3692-3697. [12] Fernández M.F., Boris S., Barbés C.. (2003). Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. Journal of Applied Microbiology, 94(3), P.449-455. [13] Aili Li, Jie Zheng, Xueting Han, Zehua Jiang, Bowen Yang, Sijia Yang, Wenjia Zhou, Chun Li, Mingshuang Sun. (2023). Health implication of lactose intolerance and 50 updates on its dietary management. International Dairy Journal, 140, 105608. [14] Sung-Il Ahn, Moon Seong Kim, Dong Gun Park, Bok Kyung Han, Young Jun Kim. (2023). Effects of probiotics administration on lactose intolerance in adulthood: A meta-analysis. Journal of Dairy Science, 106(7), P.4489-4501. [15] Ouwehand A.C., Salminen S., Isolauri E.. (2002). Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek, 82, P.279–289. [16] Boris S., Suárez J.E., Vázquez F., Barbés C.. (1998). Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun, 66(5), P.1985-1989. [17] Duygu Ağagündüz, Teslime Özge Şahin, Şerife Ayten, Birsen Yılmaz, Bartu Eren Güneşliol, Pasquale Russo, Giuseppe Spano, Fatih Özogul. (2022). Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. Food Bioscience, 47, 101617. [18] Guan,Xuefang, Xu,Qingxian, Zheng,Yi, Qian,Lei, Lin,Bin. (2017). Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Brazilian Journal of Microbiology, 48(4), P.730-739. [19] Sneh Punia Bangar, Shweta Suri, Monica Trif, Fatih Ozogul. (2022). Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, 101615. [20] M. Surendran Nair, M.A. Amalaradjou, K. Venkitanarayanan. (2017). Chapter One - Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. Advances in Applied Microbiology, 98, P.1-29. [21] Kyeong-Hwan Back, Jae-Won Ha, Dong-Hyun Kang. (2014). Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia 51 coli O157:H7 and Listeria monocytogenes on organic fresh lettuce. Food Control, 44, P.78-85. [22] Nikheel Bhojraj Rathod, Girija Gajanan Phadke, Giulia Tabanelli, Anuya Mane, Rahul Chudaman Ranveer, Asif Pagarkar, Fatih Ozogul. (2021). Recent advances in bio-preservatives impacts of lactic acid bacteria and their metabolites on aquatic food products. Food Bioscience, 44(Part B), 101440. [23] Lindgren S.E., Dobrogosz W.J.. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 7(1-2), P.149–163. [24] Digambar Kavitake, Swati Tiwari, Irshad Ahmad Shah, Palanisamy Bruntha Devi, Cedric Delattre, G. Bhanuprakash Reddy, Prathapkumar Halady Shetty. (2023). Antipathogenic potentials of exopolysaccharides produced by lactic acid bacteria and their food and health applications. Food Control, 152, 109850. [25] Deegan L.H., Cotter P.D., Hill C., Ross P.. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16(9), P.1058-1071. [26] Wenping Lei, Lulu Hao, Shanbing You, Hui Yao, Chengguo Liu, Hui Zhou. (2022). Partial purification and application of a bacteriocin produced by probiotic Lactococcus lactis C15 isolated from raw milk. Lebensmittel-Wissenschaft & Technologie, 169, 113917. [27] Daba G.M., Elnahas M.O., Elkhateeb W.A.. (2022). Beyond biopreservatives, bacteriocins biotechnological applications: History, current status, and promising potentials. Biocatalysis and Agricultural Biotechnology, 39, 102248. [28] Deepak Kumar Verma, Mamta Thakur, Smita Singh, Soubhagya Tripathy, Alok 52 Kumar Gupta, Deepika Baranwal, Ami R. Patel, Nihir Shah, Gemilang Lara Utama, Alaa Kareem Niamah, Mónica L. Chávez-González, Carolina Flores Gallegos, Cristobal Noe Aguilar, Prem Prakash Srivastav. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. [29] Paulo Fernandes, Daniela Loureiro, Vitor Monteiro, Carla Ramos, Luis Augusto Nero, Svetoslav Dimitrov Todorov, Joana Santos Guerreiro. (2017). Lactobacillus plantarum isolated from cheese: production and partial characterization of bacteriocin B391. Ann Microbiol, 67, 433–442. [30] Perez, R.H., Zendo, T., Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13, S3. [31] Yanglei Yi, Ping Li, Fan Zhao, Tingting Zhang, Yuanyuan Shan, Xin Wang, Bianfang Liu, Yujie Chen, Xin Zhao, Xin Lü. (2022). Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends in Food Science & Technology, 120, P.387-401. [32] Potter A., Ceotto H., Coelho M.L.V., Guimarães A.J., Bastos M.D.C.F.. (2014). The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus. Microbiology (Reading), 160(Pt 5), P.917-928. [33] Simons A., Alhanout K., Duval R.E.. (2020). Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms, 8(5), P.639. [34] Kumariya R., Garsa A.K., Rajput Y.S., Sood S.K., Akhtar N., Patel S.. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance 53 development in food spoilage causing bacteria. Microbial Pathogenesis, 128, P.171-177. [35] Alvarez-Sieiro P., Montalbán-López M., Mu D., Kuipers O.P.. (2016). Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100, P. 2939–2951. [36] Y Yutthana Kingcha, Amonlaya Tosukhowong, Takeshi Zendo, Sittiruk Roytrakul, Plearnpis Luxananil, Kingeaw Chareonpornsook, Ruud Valyasevi, Kenji Sonomoto, Wonnop Visessanguan. (2012). Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control, 25(1), P.190-196. [37] Sutyak K.E., Anderson R.A., Dover S.E., Feathergill K.A., Aroutcheva A.A., Faro S., Chikindas M.L.. (2008). Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infectious Diseases in Obstetrics and Gynecology, vol 2008, Article ID 540758, P.1-10. [38] Ma. del Rocío López-Cuellar, Adriana-Inés Rodríguez-Hernández, Norberto Chavarría-Hernández. (2016). LAB bacteriocin applications in the last decade. Biotechnology & Biotechnological Equipment, 30(6), P.1039-1050. [39] Joo N.E., Ritchie K., Kamarajan P., Miao D., Kapila Y.L.. (2012). Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Medicine, 1(3), P.295-305. [40] Yusuf M.A., Ichwan S.J., Haziyamin T., Hamid A.. (2014). Anti-proliferative activities of purified bacteriocin from Enterococcus mundtii strain C4L10 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. International Journal of Pharmacy and Pharmaceutical Sciences, 7(2), P. 54 334-337. [41] Kadariya J., Smith T.C., Thapaliya D.. (2014). Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. BioMed Research International, vol 2014, Article ID 827965, P.9. [42] Shi-Yu Chen, Rui-Si Yang, Bai-Quan Ci, Wei-Gang Xin, Qi-Lin Zhang, Lian-Bing Lin, Feng Wang. (2023). A novel bacteriocin against multiple foodborne pathogens from Lacticaseibacillus rhamnosus isolated from juice ferments: ATF perfusion-based preparation of viable cells, characterization, antibacterial and antibiofilm activity. Current Research in Food Science, 6, 100484. [43] Jian-Ping Ying, Gang Wu, Yan-Mei Zhang, Qi-Lin Zhang. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204, 109258. [44] Xulei Wu, Yi-Cheng Su. (2014). Growth of Staphylococcus aureus and enterotoxin production in pre-cooked tuna meat. Food Control, 42, P.63-70. [45] Gilbert R.J.. (1974). Staphylococcal food poisoning and botulism. Postgraduate Medical Journal, 50(588), P.603–611. [46] Kalita A., Hu J., Torres A.G.. (2014). Recent advances in adherence and invasion of pathogenic Escherichia coli. Curr Opin Infect Dis, 27(5), P.459-64. [47] Fatima R., Aziz M.. (2023). Enterohemorrhagic Escherichia Coli. In: StatPearls. StatPearls Publishing, Treasure Island (FL). [48] Outbreak of E. coli Infections Linked to Ground Beef. (2018). 2023 年 7 月 7 日,取 自「 Centers for Disease Control and Prevention 」網站: https://www.cdc.gov/ecoli/2018/o26-09-18/index.html [49] Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce (Final 55 Update). (2018). 2023 年 7 月 7 日,取自「 Centers for Disease Control and Prevention 」網站: https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html [50] Yi-Zhou Xiang, Yan-Mei Zhang, Ying-Yang Liu, Man Zhang, Lian-Bing Lin, Qi-Lin Zhang. (2021). Purification, characterization, and antibacterial and antibiofilm activity of a novel bacteriocin against Salmonella Enteritidis. Food Control, 127, 108110. [51] Xin Lü, Lanhua Yi, Jing Dang, Ying Dang, Bianfang Liu. (2014). Purification of novel bacteriocin produced by Lactobacillus coryniformis MXJ 32 for inhibiting bacterial foodborne pathogens including antibiotic-resistant microorganisms. Food Control, 46, P.264-271. [52] Yi-Zhou Xiang, Gang Wu, Yi-Ping Zhang, Lin-Yu Yang, Yan-Mei Zhang, Zi-Shun Zhao, Xian-Yu Deng, Qi-Lin Zhang. (2022). Inhibitory effect of a new bacteriocin RSQ04 purified from Lactococcus lactis on Listeria monocytogenes and its application on model food systems. Lebensmittel-Wissenschaft & Technologie, 164, 113626. [53] Ma Jiage, Yu Wei, Hou Juncai, Han Xiue, Shao Hong, Liu Ying. (2020). Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. International Journal of Food Properties, 23(1), P. 677-692. [54] Mahpara Zafar, Sadia Alam, Maimoona Sabir, Nusrat Saba, Ahmad Ud Din, Rafiq Ahmad, Muhammad Rafiullah Khan, Ali Muhammad, Kenan Sinan Dayisoylu. (2022). Isolation, characterization, bacteriocin production and biological 56 potential of Bifidobacteria of ruminants. Analytical Biochemistry, 658, 114926. [55] Macwana S.J., Muriana P.M.. (2012). A ‘bacteriocin PCR array’ for identification of bacteriocin-related structural genes in lactic acid bacteria. Journal of Microbiological Methods, 88(2), P.197-204. [56] Huaxi Yi, Lanwei Zhang, Yanfeng Tuo, Xue Han, Ming Du. (2010). A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control, 21(4), P.426-430. [57] Więckowicz M., Schmidt M., Sip A., Grajek W.. (2011). Development of a PCR-based assay for rapid detection of class IIa bacteriocin genes. Lett Appl Microbiol, 52(3), P.281-289. [58] Cong Xu, Yongyan Fu, Fei Liu, Zhijing Liu, Jiage Ma, Rui Jiang, Chaonan Song, Zhanmei Jiang, Juncai Hou. (2021). Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. Lebensmittel-Wissenschaft & Technologie, 137, 110338. [59] Irene Martín, Joana Barbosa, Sofia I.A. Pereira, Alicia Rodríguez, Juan J. Córdoba, Paula Teixeira. (2023). Study of lactic acid bacteria isolated from traditional ripened foods and partial characterization of their bacteriocins. Lebensmittel-Wissenschaft & Technologie, 173, 114300. [60] Fimland G., Johnsen L., Bjørn D.. (2005). Pediocin-like antimicrobial peptides (class II a bacteriocins) and their immunity proteins: Biosynthesis, structure, and mode of action. Journal of Peptide Science: An Official Publication of the European Peptide Society, 11 (11), P.688-696. [61] Ruixiang Zhao, Yanqing Lu, Junjian Ran, Gang Li, Shuang Lei, Yang Zhu, Baocheng Xu. (2020). Purification and characterization of bacteriocin produced by 57 Lactobacillus rhamnosus zrx01, Food Bioscience, 38, 100754. [62] Xiangpeng Han, Mengyu Zhang, Jiayi Peng, Jinsong Wu, Qingping Zhong. (2023). Purification and characterization of a novel bacteriocin from Lactiplantibacillus plantarum Z057, and its antibacterial and antibiofilm activities against Vibrio parahaemolyticus, Lebensmittel-Wissenschaft & Technologie, 173, 114358. [63] Jie Jiang, Bo Shi, Deqiang Zhu, Qingxia Cai, Yiran Chen, Jinnian Li, Kezong Qi, Ming Zhang. (2012). Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control, 23(2), P.338-344. [64] Ou Chen, Yang Hong, Jiahong Ma, Lili Deng, Lanhua Yi, Kaifang Zeng. (2021). Screening lactic acid bacteria from pickle and cured meat as biocontrol agents of Penicillium digitatum on citrus fruit. Biological Control, 158, 104606. [65] Ying Zhang, Jingming Yang, Ying Liu, Yaqian Wu, Zhijia Fang, Yaling Wang, Lijun Sun, Qi Deng, Ravi Gooneratne, Lixia Xiao. (2020). A novel bacteriocin PE-ZYB1 produced by Pediococcus pentosaceus zy-B isolated from intestine of Mimachlamys nobilis: Purification, identification and its anti-listerial action. Lebensmittel-Wissenschaft & Technologie, 118, 108760. [66] Venkatesh Perumal, Arul Venkatesan. (2017). Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. Lebensmittel-Wissenschaft & Technologie, 78, P.303-310. [67] Hyunwoo Ahn, Jinseon Kim, Wang June Kim. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, P.59-66. 58 [68] Lv X., Miao L., Ma H., Bai F., Lin Y., Sun M., Li J.. (2018). Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Sci Biotechnol, 27, P.695–703. [69] Ahmed Adebisi Otunba, Akinniyi Adediran Osuntoki, Wahab Okunowo, Daniel Kolawole Olukoya, Benjamin Ayodipupo Babalola. (2022). Characterization of novel bacteriocin PB2 and comprehensive detection of the pediocin gene ped-A1 from Pediococcus pentosaceus PB2 strain isolated from a sorghum-based fermented beverage in Nigeria. Biotechnology Reports, 36, e00772. [70] Renpeng Du, Wenxiang Ping, Jingping Ge. (2022). Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. Lebensmittel-Wissenschaft & Technologie, 153, 112451.
|