|
1.Oerke, E., Crop losses to pests. The Journal of Agricultural Science 2006, 144, 31. 2.Karell Mart´ınez, I. F., Damia´ Barcelo, Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 879 (2000) 27–37 2000. 3.Ishizuka, M.; Tanikawa, T.; Tanaka, K. D.; Heewon, M.; Okajima, F.; Sakamoto, K. Q.; Fujita, S., Pesticide resistance in wild mammals-Mechanisms of anticoagulant resistance in wild rodents. The Journal of toxicological sciences 2008, 33 (3), 283-291. 4.Eason, C. T.; Murphy, E. C.; Wright, G. R.; Spurr, E. B., Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 2002, 11 (1), 35-48. 5.Buckle, A. P.; Prescott, C. V.; Ward, K. J., Resistance to the first and second generation anticoagulant rodenticides-a new perspective. 1994. 6.Rattner, B. A.; Lazarus, R. S.; Elliott, J. E.; Shore, R. F.; van den Brink, N., Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environmental science & technology 2014, 48 (15), 8433-8445. 7.Stone, W. B.; Okoniewski, J. C.; Stedelin, J. R., Poisoning of wildlife with anticoagulant rodenticides in New York. Journal of Wildlife Diseases 1999, 35 (2), 187-193. 8.Newton, I.; Shore, R.; Wyllie, I.; Birks, J.; Dale, L., Empirical evidence of side-effects of rodenticides on some predatory birds and mammals. Advances in vertebrate pest management 1999, 347-367. 9.Erickson, W. A.; Urban, D. J., Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach. US Environmental Protection Agency, Office of Prevention, Pesticides and …: 2004. 10.Shore, R. F.; Birks, J. D.; Freestone, P., Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat Mustela putorius. New Zealand Journal of Ecology 1999, 199-206. 11.Albert, C. A.; Wilson, L. K.; Mineau, P.; Trudeau, S.; Elliott, J. E., Anticoagulant rodenticides in three owl species from western Canada, 1988–2003. Archives of Environmental Contamination and toxicology 2010, 58 (2), 451-459. 12.Jacquot, M.; Coeurdassier, M.; Couval, G.; Renaude, R.; Pleydell, D.; Truchetet, D.; Raoul, F.; Giraudoux, P., Using long‐term monitoring of red fox populations to assess changes in rodent control practices. Journal of Applied Ecology 2013, 50 (6), 1406-1414. 13.Thomas, P. J.; Mineau, P.; Shore, R. F.; Champoux, L.; Martin, P. A.; Wilson, L. K.; Fitzgerald, G.; Elliott, J. E., Second generation anticoagulant rodenticides in predatory birds: probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environment International 2011, 37 (5), 914-920. 14.Wiens, J. D.; Dilione, K. E.; Eagles-Smith, C. A.; Herring, G.; Lesmeister, D. B.; Gabriel, M. W.; Wengert, G. M.; Simon, D. C., Anticoagulant rodenticides in Strix owls indicate widespread exposure in west coast forests. Biological Conservation 2019, 238, 108238. 15.Ernst, W.; Doe, K.; Jonah, P.; Young, J.; Julien, G.; Hennigar, P., The toxicity of chlorothalonil to aquatic fauna and the impact of its operational use on a pond ecosystem. Archives of environmental contamination and toxicology 1991, 21 (1), 1-9. 16.A Draper, P. C., C Campbell, M Jones, A Newman Taylor, Occupational asthma from fungicides fluazinam and chlorothalonil. Occup Environ Med 2003;60:76–77 2002. 17.Sherrard, R.; Murray-Gulde, C.; Rodgers Jr, J.; Shah, Y., Comparative toxicity of chlorothalonil: Ceriodaphnia dubia and Pimephales promelas. Ecotoxicology and Environmental Safety 2003, 56 (3), 327-333. 18.Peñuela, G. A.; Barceló, D., Photodegradation and stability of chlorothalonil in water studied by solid-phase disk extraction, followed by gas chromatographic techniques. Journal of Chromatography A 1998, 823 (1-2), 81-90. 19.Sakkas, V. A.; Lambropoulou, D. A.; Albanis, T. A., Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances. Chemosphere 2002, 48 (9), 939-945. 20.Ukai, T.; Itou, T.; Katayama, A., Degradation of chlorothalonil in soils treated repeatedly with chlorothalonil. Journal of Pesticide Science 2003, 28 (2), 208-211. 21.Davies, P.; White, R., The toxicology and metabolism of chlorothalonil in fish. I. Lethal levels for Salmo gairdneri, Galaxias maculatus, G. truttaceus and G. auratus and the fate of 14C-TCIN in S. gairdneri. Aquatic toxicology 1985, 7 (1-2), 93-105. 22.Caux, P. Y.; Kent, R.; Fan, G.; Stephenson, G., Environmental fate and effects of chlorothalonil: a Canadian perspective. Critical Reviews in Environmental Science and Technology 1996, 26 (1), 45-93. 23.van der Pas, L. J. T.; Matser, A. M.; Boesten, J. J. T. I.; Leistra, M., Behaviour of metamitron and hydroxy‐chlorothalonil in low‐humic sandy soils. Pesticide science 1999, 55 (9), 923-934. 24.Kwon, J.-W.; Armbrust, K. L., Degradation of chlorothalonil in irradiated water/sediment systems. Journal of Agricultural and food chemistry 2006, 54 (10), 3651-3657. 25.Xu, W.; Vebrosky, E. N.; Armbrust, K. L., Potential toxic effects of 4-OH-chlorothalonil and photodegradation product on human skin health. Journal of Hazardous Materials 2020, 122575. 26.Armbrust, K. L., Chlorothalonil and chlorpyrifos degradation products in golf course leachate. Pest Management Science: formerly Pesticide Science 2001, 57 (9), 797-802. 27.Review, U. S. E. P. A. O. o. P. P. S.; Division, R., Reregistration Eligibility Decision: Chlorothalonil, List A, Case 0097. US Environmental Protection Agency, Office of Pesticide Programs, Special …: 1999. 28.Hou, F.; Zhao, L.; Liu, F., Residues and dissipation of chlorothalonil and azoxystrobin in cabbage under field conditions. International Journal of Environmental Analytical Chemistry 2016, 96 (12), 1105-1116. 29.The pesticide properties database(http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm). Chemistry International 2011. 30.Authority, E. F. S.; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A., Peer review of the pesticide risk assessment of the active substance chlorothalonil. EFSA Journal 2018, 16 (1), e05126. 31.Authority, E. F. S., Modification of the existing MRLs for chlorothalonil in barley and several food commodities of animal origin. EFSA Journal 2010, 8 (3), 1524. 32.European Food Safety, A.; Anastassiadou, M.; Bernasconi, G.; Brancato, A.; Carrasco Cabrera, L.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J. O.; Miron, I.; Nave, S.; Pedersen, R.; Reich, H.; Rojas, A.; Sacchi, A.; Santos, M.; Theobald, A.; Vagenende, B.; Verani, A., Evaluation of confirmatory data following the Article 12 MRL review for chlorothalonil, including assessments for import tolerances for banana, papaya and peanuts. EFSA J 2020, 18 (9), e06239. 33.USEPA, Reregistration Eligibility Decision (RED): Chlorothalonil. United States Environmental Protection Agency, Prevention, Pesticides and …: 1999. 34.Horak, K. E.; Fisher, P. M.; Hopkins, B., Pharmacokinetics of anticoagulant rodenticides in target and non-target organisms. In Anticoagulant Rodenticides and Wildlife, Springer: 2018; pp 87-108. 35.Vandenbroucke, V.; BOUSQUET‐MELOU, A.; De Backer, P.; Croubels, S., Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. Journal of veterinary pharmacology and therapeutics 2008, 31 (5), 437-445. 36.Fernandez‐de‐Simon, J.; Coeurdassier, M.; Couval, G.; Fourel, I.; Giraudoux, P., Do bromadiolone treatments to control grassland water voles (Arvicola scherman) affect small mustelid abundance? Pest management science 2019, 75 (4), 900-907. 37.Giraudoux, P.; Tremollières, C.; Barbier, B.; Defaut, R.; Rieffel, D.; Bernard, N.; Lucot, É.; Berny, P., Persistence of bromadiolone anticoagulant rodenticide in Arvicola terrestris populations after field control. Environmental research 2006, 102 (3), 291-298. 38.Walker, L. A.; Turk, A.; Long, S. M.; Wienburg, C. L.; Best, J.; Shore, R. F., Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Science of the Total Environment 2008, 392 (1), 93-98. 39.Sánchez-Barbudo, I. S.; Camarero, P. R.; Mateo, R., Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Science of the Total Environment 2012, 420, 280-288. 40.Sage, M.; Fourel, I.; Cœurdassier, M.; Barrat, J.; Berny, P.; Giraudoux, P., Determination of bromadiolone residues in fox faeces by LC/ESI-MS in relationship with toxicological data and clinical signs after repeated exposure. Environmental Research 2010, 110 (7), 664-674. 41.Berny, P. J.; Buronfosse, T.; Buronfosse, F.; Lamarque, F.; Lorgue, G., Field evidence of secondary poisoning of foxes (Vulpes vulpes) and buzzards (Buteo buteo) by bromadiolone, a 4-year survey. Chemosphere 1997, 35 (8), 1817-1829. 42.López-Perea, J. J.; Mateo, R., Secondary exposure to anticoagulant rodenticides and effects on predators. In Anticoagulant rodenticides and wildlife, Springer: 2018; pp 159-193. 43.Department of Pesticide Regulation(https://www.pctonline.com/article/california-governor-signs-rodenticide-ban-bill/). 2018. 44.Elliott, J. E.; Rattner, B. A.; Shore, R. F.; Van Den Brink, N. W., Paying the pipers: mitigating the impact of anticoagulant rodenticides on predators and scavengers. Bioscience 2016, 66 (5), 401-407. 45.Berny, P.; Esther, A.; Jacob, J.; Prescott, C., Risk mitigation measures for anticoagulant rodenticides as biocidal products. Final report to the European Commission (contract N 07-0307/2012/638259/ETU/D3) 2014. 46.Voulvoulis, N.; Scrimshaw, M. D.; Lester, J. N., Analytical methods for the determination of 9 antifouling paint booster biocides in estuarine water samples. Chemosphere 1999, 38 (15), 3503-3516. 47.Albanis, T.; Lambropoulou, D.; Sakkas, V.; Konstantinou, I., Antifouling paint booster biocide contamination in Greek marine sediments. Chemosphere 2002, 48 (5), 475-485. 48.Peruga, A.; Barreda, M.; Beltrán, J.; Hernández, F., A robust GC-MS/MS method for the determination of chlorothalonil in fruits and vegetables. Food Additives & Contaminants: Part A 2013, 30 (2), 298-307. 49.Anastassiades, M.; Maštovská, K.; Lehotay, S. J., Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. Journal of Chromatography A 2003, 1015 (1-2), 163-184. 50.Maštovská, K.; Lehotay, S. J., Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues. Journal of Chromatography A 2004, 1040 (2), 259-272. 51.Lehotay, S. J.; Maštovská, K.; Lightfield, A. R., Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. Journal of AOAC International 2005, 88 (2), 615-629. 52.Lv, P.; Min, S.; Wang, Y.; Zheng, X.; Wu, X.; Li, Q. X.; Hua, R., Flavonoid‐sensitized photolysis of chlorothalonil in water. Pest Management Science 2020. 53.Potter, T. L.; Wauchope, R. D.; Culbreath, A. K., Accumulation and decay of chlorothalonil and selected metabolites in surface soil following foliar application to peanuts. Environmental science & technology 2001, 35 (13), 2634-2639. 54.Chaves, A., Shea, D. ,Danehower, D., Analysis of chlorothalonil and degradation products in soil and water by GC/MS and LC/MS. Chemosphere 2008, 71 (4), 629-38. 55.Yamamoto, A.; Miyamoto, I.; Kitagawa, M.; Moriwaki, H.; Miyakoda, H.; Kawasaki, H.; Arakawa, R., Analysis of chlorothalonil by liquid chromatography/mass spectrometry using negative-ion atmospheric pressure photoionization. Analytical Sciences 2009, 25 (5), 693-697. 56.Modified QuEChERS-Method for the Analysis of Chlorothalonil in Fruits and Vegetables. 2010. 57.Bedassa, T.; Gure, A.; Megersa, N., Modified QuEChERS Method for the Determination of Multiclass Pesticide Residues in Fruit Samples Utilizing High-Performance Liquid Chromatography. Food Analytical Methods 2015, 8 (8), 2020-2027. 58.Lin, H.; Zhao, S.; Fan, X.; Ma, Y.; Wu, X.; Su, Y.; Hu, J., Residue behavior and dietary risk assessment of chlorothalonil and its metabolite SDS-3701 in water spinach to propose maximum residue limit (MRL). Regulatory Toxicology and Pharmacology 2019, 107, 104416. 59.Gebrehiwot, W. H.; Erkmen, C.; Uslu, B., A novel HPLC-DAD method with dilute-and-shoot sample preparation technique for the determination of buprofezin, dinobuton and chlorothalonil in food, environmental and biological samples. International Journal of Environmental Analytical Chemistry 2020, 1-15. 60.Jin, M. c.; Chen, X. h., Rapid determination of three anticoagulant rodenticides in whole blood by liquid chromatography coupled with electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 2006, 20 (18), 2741-2746. 61.Vandenbroucke, V.; Desmet, N.; De Backer, P.; Croubels, S., Multi-residue analysis of eight anticoagulant rodenticides in animal plasma and liver using liquid chromatography combined with heated electrospray ionization tandem mass spectrometry. Journal of chromatography B 2008, 869 (1-2), 101-110. 62.Jin, M.-c.; Cai, M.-q.; Chen, X.-h., Simultaneous measurement of indandione-type rodenticides in human serum by liquid chromatography-electrospray ionization-tandem mass spectrometry. Journal of analytical toxicology 2009, 33 (6), 294-300. 63.Hernández, A. M.; Bernal, J.; Bernal, J. L.; Martín, M. T.; Caminero, C.; Nozal, M. J., Analysis of anticoagulant rodenticide residues in Microtus arvalis tissues by liquid chromatography with diode array, fluorescence and mass spectrometry detection. Journal of Chromatography B 2013, 925, 76-85. 64.Dong, X.; Liang, S.; Sun, H., Determination of seven anticoagulant rodenticides in human serum by ultra-performance liquid chromatography-mass spectrometry. Analytical Methods 2015, 7 (5), 1884-1889. 65.Fourel, I.; Damin-Pernik, M.; Benoit, E.; Lattard, V., Core-shell LC-MS/MS method for quantification of second generation anticoagulant rodenticides diastereoisomers in rat liver in relationship with exposure of wild rats. J Chromatogr B Analyt Technol Biomed Life Sci 2017, 1041-1042, 120-132. 66.Qiao, Z.; Xiang, P.; Shen, B.; Shen, M.; Yan, H., Simultaneous Determination of 13 Anticoagulant Rodenticidesin Human Blood by Liquid Chromatography–Tandem Mass Spectrometry and its Application in Three Poisoning Cases. Journal of forensic sciences 2018, 63 (3), 784-792. 67.Seljetun, K. O.; Sandvik, M.; Vindenes, V.; Eliassen, E.; Øiestad, E. L.; Madslien, K.; Moe, L., Comparison of anticoagulant rodenticide concentrations in liver and feces from apparently healthy red foxes. Journal of Veterinary Diagnostic Investigation 2020, 1040638720927365. 68.Meiser, H., Detection of anticoagulant residues by a new HPLC method in specimens of poisoned animals and a poison control case study. Journal of analytical toxicology 2005, 29 (6), 556-563. 69.Jin, M.-c.; Chen, X.-h.; Ye, M.-l.; Zhu, Y., Analysis of indandione anticoagulant rodenticides in animal liver by eluent generator reagent free ion chromatography coupled with electrospray mass spectrometry. Journal of Chromatography A 2008, 1213 (1), 77-82. 70.Cai, M.-q.; Chen, X.-h.; OuYang, X.-k.; Jin, M.-c., Rapid Identification and Determination of the Rodenticide Valone in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of analytical toxicology 2009, 33 (2), 104-108. 71.Armentano, A.; Iammarino, M.; Magro, S. L.; Muscarella, M., Validation and application of multi-residue analysis of eight anticoagulant rodenticides by high-performance liquid chromatography with fluorimetric detection. Journal of Veterinary Diagnostic Investigation 2012, 24 (2), 307-311. 72.Schaff, J. E.; Montgomery, M. A., An HPLC–HR-MS-MS method for identification of anticoagulant rodenticides in blood. Journal of analytical toxicology 2013, 37 (6), 321-325. 73.Fourel, I.; Benoit, E.; Lattard, V., Enantiomeric fraction evaluation of the four stereoisomers of difethialone in biological matrices of rat by two enantioselective liquid chromatography tandem mass spectrometry methods: Chiral stationary phase or derivatization. Journal of Chromatography A 2020, 460848. 74.Vudathala, D.; Cummings, M.; Murphy, L., Analysis of multiple anticoagulant rodenticides in animal blood and liver tissue using principles of QuEChERS method. Journal of analytical toxicology 2010, 34 (5), 273-279. 75.Gómez-Ramírez, P.; Martínez-López, E.; Navas, I.; María-Mojica, P.; García-Fernández, A., A modification of QuEChERS method to analyse anticoagulant rodenticides using small blood samples. Revista de Toxicología 2012, 29 (1), 10-14. 76.Cao, X.; Yang, X.; Liu, Z.; Jiao, H.; Liu, S.; Liu, L.; Meng, Q., Rapid simultaneous screening and detection of 12 anticoagulant rodenticides in food by ultra-performance liquid chromatography-triple quadrupole/linear ion trap tandem mass spectrometry. Food Analytical Methods 2017, 10 (11), 3538-3547. 77.Lohr, M. T., Anticoagulant rodenticide exposure in an Australian predatory bird increases with proximity to developed habitat. Science of the Total Environment 2018, 643, 134-144. 78.Regnery, J.; Parrhysius, P.; Schulz, R. S.; Möhlenkamp, C.; Buchmeier, G.; Reifferscheid, G.; Brinke, M., Wastewater-borne exposure of limnic fish to anticoagulant rodenticides. Water research 2019, 167, 115090. 79.Hong, S. Y.; Morrissey, C.; Lin, H. S.; Lin, K. S.; Lin, W. L.; Yao, C. T.; Lin, T. E.; Chan, F. T.; Sun, Y. H., Frequent detection of anticoagulant rodenticides in raptors sampled in Taiwan reflects government rodent control policy. Sci Total Environ 2019, 691, 1051-1058. 80.沈振峰; 何國榮, 液相層析質譜術在藥物分析之應用. 藥物食品分析 1995, 3 (4), 243-258. 81.Sheen, J. F. H., Y. H., A discharge adaptor interface for use in liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2011, 25 (24), 3675-82. 82.Ferrer, I.; Barceló, D., Simultaneous determination of antifouling herbicides in marina water samples by on-line solid-phase extraction followed by liquid chromatography–mass spectrometry. Journal of Chromatography A 1999, 854 (1-2), 197-206. 83.Anastassiades, M., et al., Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. Journal of AOAC international, 2003. 86(2): p. 412-431. 2003. 84.Scribner, E. A.; Orlando, J. L.; Battaglin, W. A.; Sandstrom, M. W.; Kuivila, K. M.; Meyer, M. T. Results of analyses of the fungicide Chlorothalonil, its degradation products, and other selected pesticides at 22 surface-water sites in five Southern states, 2003-04; GEOLOGICAL SURVEY RESTON VA: 2006. 85.陳慧珊; 徐慈鴻, 猛禽類肝臟中抗凝血殺鼠劑多重殘留分析方法之建立及應用. 臺灣農藥科學 2019, (6), 105-117. 86.Peetris, P. Second generation anticoagulant rodenticides in birds of prey of Estonia. Eesti Maaülikool, 2019. 87.Bidny, S.; Gago, K.; David, M.; Duong, T.; Albertyn, D.; Gunja, N., A validated LC-MS-MS method for simultaneous identification and quantitation of rodenticides in blood. J Anal Toxicol 2015, 39 (3), 219-24. 88.Lohr, M. T., Anticoagulant rodenticide exposure in an Australian predatory bird increases with proximity to developed habitat. Sci Total Environ 2018, 643, 134-144. 89.Souverain, S.; Rudaz, S.; Veuthey, J.-L., Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. Journal of Chromatography A 2004, 1058 (1-2), 61-66. 90.Hong, S.-Y.; Lin, H.-S.; Walther, B. A.; Shie, J.-E.; Sun, Y.-H., Recent avian poisonings suggest a secondary poisoning crisis of black kites during the 1980s in Taiwan. The Journal of Raptor Research 2018, 52 (3), 326-337. 91.Christensen, T. K.; Lassen, P.; Elmeros, M., High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Archives of Environmental Contamination and Toxicology 2012, 63 (3), 437-444. 92.Ruiz-Suárez, N.; Henríquez-Hernández, L. A.; Valerón, P. F.; Boada, L. D.; Zumbado, M.; Camacho, M.; Almeida-González, M.; Luzardo, O. P., Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Science of the Total Environment 2014, 485, 371-376. 93.Murray, M., Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey in Massachusetts, USA, 2012–2016, in relation to use of rodenticides by pest management professionals. Ecotoxicology 2017, 26 (8), 1041-1050. 94.Hou, F.; Zhao, L.; Liu, F., Determination of chlorothalonil residue in cabbage by a modified QuEChERS-based extraction and gas chromatography–mass spectrometry. Food analytical methods 2016, 9 (3), 656-663.
|