[1]Yiquan Dai, Kunpeng Zhu, “A machine vision system for micro-milling tool condition monitoring”, Precision Engineering, Volume 52, Pages 183-191, 2018
[2]吳廷凱 , “開發線上刀具磨耗之量測系統”, 國立高雄第一科技大學, 電機工程研究所, 碩士學位論文, 2017[3]Jitin Malhotra, Sunil Jha, “Fuzzy c-means clustering based colour image segmentation for tool wear monitoring in micro-milling”, Precision Engineering, Volume 72, Pages 690-705, 2021
[4]Junjie Zhou, Jianbo Yu, “Chisel edge wear measurement of high-speed steel twist drills based on machine vision”, Computers in Industry, Volume 128, Pages 103436, 2021
[5]Jianbo Yu, Xun Cheng, Liang Lu, Bin Wu, “A machine vision method for measurement of machining tool wear”, Measurement, Volume 182, Pages 109683, 2021
[6]Xuewei Zhang, Tianbiao Yu, Pengfei Xu, Ji Zhao, “In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling”, Mechanical Systems and Signal Processing, Volume 164, Pages 108233, 2022
[7]Mohamed Marei, Shirine El Zaatari, Weidong Li, “Transfer learning enabled convolutional neural networks for estimating health state of cutting tools”, Robotics and Computer-Integrated Manufacturing, Volume 71, Pages 102145, 2021
[8]Sumant Bagri, Ashish Manwar, Alwin Varghese, Soham Mujumdar, Suhas S. Joshi, “Tool wear and remaining useful life prediction in micro-milling along complex tool paths using neural networks”, Journal of Manufacturing Processes, Volume 71, Pages 679-698, 2021
[9]T. Mikołajczyk, K. Nowicki, A. Bustillo, D. Yu Pimenov, “Predicting tool life in turning operations using neural networks and image processing”, Mechanical Systems and Signal Processing, Volume 104, Pages 503-513, 2018
[10]P.J. Bagga, K.S. Bajaj, M.A. Makhesana, K.M. Patel, “An online tool life prediction system for CNC turning using computer vision techniques”, Materials Today: Proceedings, issn 2214-7853, 2021
[11]方彥文, “基於工具機主軸電流智能化預測刀具壽命”, 國立虎尾科技大學, 機械與電腦輔助工程系, 碩士學位論文, 2019[12]吳俊賢, “神經網路疊代收斂性分析與智能化預測加工品質及砂輪壽命”, 國立虎尾科技大學, 機械與電腦輔助工程系, 碩士學位論文, 2021[13]陳彥叡, “基於視覺檢測與智能監控電流預估刀具磨耗與壽命”, 國立虎尾科技大學, 機械與電腦輔助工程系, 碩士學位論文, 2021
[14]光線與色溫的變化(https://read01.com/6GMyddj.html#.Ypcd_6hBxPY)
[15]更換臻光彩Ra95高演色性濾藍光護眼燈泡,還你一個清晰明亮的未來(https://www.mobile01.com/topicdetail.php?f=168&t=5429643)
[16]ISO 8688-2:1989(en) Tool life testing in milling — Part 2: End milling
[17]Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, in IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 39, Pages 1137-1149, 2017
[18]陳建宏, “以基於區域的卷積神經網路實現空拍影片之魟魚偵測和辨識”, 國立中山大學, 機械與機電工程學系, 碩士學位論文, 2017[19]Mengqi Chen, Lingjie Yu, Chao Zhi, Runjun Sun, Shuangwu Zhu, Zhongyuan Gao, Zhenxia Ke, Mengqiu Zhu, Yuming Zhang, “Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization”, Computers in Industry, Volume 134, Pages 103551, 2022
[20]Tangbo Bai, Jianwei Yang, Guiyang Xu, Dechen Yao, “An optimized railway fastener detection method based on modified Faster R-CNN”, Measurement, Volume 182, Pages 109742, 2021
[21]Jihao Shi, Yuanjiang Chang, Changhang Xu, Faisal Khan, Guoming Chen, Chuangkun Li, “Real-time leak detection using an infrared camera and Faster R-CNN technique”, Computers & Chemical Engineering, Volume 135, Pages 106780, 2020
[22]Yuanbin Wang, Minggao Liu, Pai Zheng, Huayong Yang, Jun Zou, “A smart surface inspection system using faster R-CNN in cloud-edge computing environment”, Advanced Engineering Informatics, Volume 43, Pages 101037, 2020