[1]L. Eklundh, H. Jin, P. Schubert, R. Guzinski, and M. J. S. Heliasz, "An optical sensor network for vegetation phenology monitoring and satellite data calibration," vol. 11, no. 8, pp. 7678-7709, 2011.
[2]王同恩, "D型研磨技術之雷射輔助蝕刻長週期光纖光柵研製及應用," 碩士, 機械工程系, 國立高雄科技大學, 高雄市, 2021.[3]A. Marcinkevičius et al., "Femtosecond laser-assisted three-dimensional microfabrication in silica," vol. 26, no. 5, pp. 277-279, 2001.
[4]G. P. Vakanas, A. A. Tseng, and P. J. J. o. L. A. Winer, "Laser-assisted chemical etching for embedded microchannels and overhanging microstructures on Si/SiO 2 substrates," vol. 14, no. 3, pp. 185-190, 2002.
[5]C. Hnatovsky, R. Taylor, E. Simova, V. Bhardwaj, D. Rayner, and P. J. O. l. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," vol. 30, no. 14, pp. 1867-1869, 2005.
[6]S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. J. A. P. A. Misawa, "Femtosecond laser assisted etching of quartz: microstructuring from inside," vol. 84, no. 1, pp. 99-102, 2006.
[7]Y. Kawaguchi, H. Niino, T. Sato, A. Narazaki, and R. Kurosaki, "A deep micro-trench on silica glass fabricated by laserinduced backside wet etching (LIBWE)," in Journal of Physics: Conference Series, 2007, vol. 59, no. 1, p. 080: IOP Publishing.
[8]T. Lee, D. Jang, D. Ahn, and D. J. J. o. A. P. Kim, "Effect of liquid environment on laser-induced backside wet etching of fused silica," vol. 107, no. 3, p. 033112, 2010.
[9]C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. J. O. E. Kazansky, "Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass," vol. 21, no. 4, pp. 3946-3958, 2013.
[10]L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. J. O. l. Xiao, "All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching," vol. 39, no. 8, pp. 2358-2361, 2014.
[11]M. Yonemura, S. Kato, K. Hasegawa, and H. J. J. o. L. M. N. Takahashi, "Formation of through holes in glass substrates by laser-assisted etching," vol. 11, no. 2, p. 143, 2016.
[12]C. A. Ross, D. G. MacLachlan, D. Choudhury, and R. R. J. O. e. Thomson, "Optimisation of ultrafast laser assisted etching in fused silica," vol. 26, no. 19, pp. 24343-24356, 2018.
[13]K. P. Luong, R. Tanabe-Yamagishi, N. Yamada, and Y. J. I. J. o. E. M. Ito, "Laser-Assisted Wet Etching of Silicon Back Surfaces Using 1552 nm Femtosecond Laser," vol. 25, p. 7, 2020.
[14]C. A. Ross et al., "A miniature fibre-optic raman probe fabricated by ultrafast laser-assisted etching," vol. 11, no. 2, p. 185, 2020.
[15]P. T. Nguyen et al., "Nanosecond laser-induced reshaping of periodic silicon nanostructures," vol. 22, pp. 43-49, 2021.
[16]J.-L. Skora et al., "High-fidelity glass micro-axicons fabricated by laser-assisted wet etching," vol. 30, no. 3, pp. 3749-3759, 2022.
[17]A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. J. O. L. Davidson, "Long-period fiber-grating-based gain equalizers," vol. 21, no. 5, pp. 336-338, 1996.
[18]B.-O. Guan et al., "Step-changed long-period fiber gratings," vol. 14, no. 5, pp. 657-659, 2002.
[19]S. Oh, W. Han, U. Paek, and Y. J. O. E. Chung, "Reduction of birefringence and polarization-dependent loss of long-period fiber gratings fabricated with a KrF excimer laser," vol. 11, no. 23, pp. 3087-3092, 2003.
[20]K. P. Lor, Q. Liu, and K. S. J. I. p. t. l. Chiang, "UV-written long-period gratings on polymer waveguides," vol. 17, no. 3, pp. 594-596, 2005.
[21]H. Chen, Z. Gu, K. J. S. Gao, and A. B. Chemical, "Humidity sensor based on cascaded chirped long-period fiber gratings coated with TiO2/SnO2 composite films," vol. 196, pp. 18-22, 2014.
[22]S. Schlangen et al., "Long-period gratings in highly germanium-doped, single-mode optical fibers for sensing applications," vol. 18, no. 5, p. 1363, 2018.
[23]H.-Y. Wen, J.-L. Chen, and C.-C. J. I. S. J. Chiang, "Square-Wave Long-Period Fiber Grating Fabricated With Double-Sided Laser-Assisted Wet Etching Technology," vol. 20, no. 13, pp. 7082-7086, 2020.
[24]R. Oliveira, L. M. Sousa, A. M. Rocha, R. Nogueira, and L. J. S. Bilro, "UV inscription and pressure induced long-period gratings through 3D printed amplitude masks," vol. 21, no. 6, p. 1977, 2021.
[25]H.-Y. Wen, H.-C. Hsu, J.-J. Weng, T.-E. Wang, Y.-K. Lin, and C.-C. J. A. N. Chiang, "A facile process for fabricating long-period fiber grating sensors using a refracted laser beam and laser-assisted wet etching," pp. 1-12, 2022.
[26]Y. Ma et al., "Thermal stability of fiber Bragg gratings fabricated by 193 nm excimer laser," vol. 516, p. 128286, 2022.
[27]Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. J. O. l. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," vol. 24, no. 10, pp. 646-648, 1999.
[28]P. Kryukov et al., "Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths," vol. 69, no. 2-4, pp. 248-255, 2003.
[29]F. Hindle et al., "Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation," vol. 16, no. 8, pp. 1861-1863, 2004.
[30]M. Dubov, I. Bennion, S. A. Slattery, and D. N. J. O. l. Nikogosyan, "Strong long-period fiber gratings recorded at 352? nm," vol. 30, no. 19, pp. 2533-2535, 2005.
[31]D. Wang, Y. Wang, and M. Yang, "Microhole-structured long period fiber grating," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 2010, p. BMA5: Optical Society of America.
[32]B. Li, L. Jiang, S. Wang, H.-L. Tsai, H. J. O. Xiao, and L. Technology, "Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing," vol. 43, no. 8, pp. 1420-1423, 2011.
[33]J. a. Duan et al., "Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber," vol. 83, pp. 94-98, 2016.
[34]Z.-M. Zheng, Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. J. I. S. J. Sun, "Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing," vol. 18, no. 3, pp. 1100-1103, 2017.
[35]X. Zhao, H. Li, B. Rao, M. Wang, B. Wu, and Z. J. S. Wang, "Spectral characteristics of square-wave-modulated type II long-period fiber gratings inscribed by a femtosecond laser," vol. 21, no. 9, p. 3278, 2021.
[36]X. Hu et al., "Direct Bragg Grating Inscription in Single Mode Step-Index TOPAS/ZEONEX Polymer Optical Fiber Using 520 nm Femtosecond Pulses," vol. 14, no. 7, p. 1350, 2022.
[37]Y. Rao, T. Zhu, Z. L. Ran, Y. Wang, J. Jiang, and A. J. O. C. Hu, "Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication," vol. 229, no. 1-6, pp. 209-221, 2004.
[38]Y. J. J. o. A. P. Wang, "Review of long period fiber gratings written by CO 2 laser," vol. 108, no. 8, p. 11, 2010.
[39]X. Lan et al., "Turn-around point long-period fiber grating fabricated by CO2 laser for refractive index sensing," vol. 177, pp. 1149-1155, 2013.
[40]Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. J. O. e. Wang, "Mode converter based on the long-period fiber gratings written in the two-mode fiber," vol. 24, no. 6, pp. 6186-6195, 2016.
[41]C. Sun et al., "A Novel Twist Sensor Based on Long-Period Fiber Grating Written in Side-Helical Polished Structure," vol. 32, no. 5, pp. 275-278, 2020.
[42]C. Jiang, Y. Liu, and C. J. I. P. T. L. Mou, "Polarization-maintaining fiber long-period grating based vector curvature sensor," vol. 33, no. 7, pp. 358-361, 2021.
[43]Q. Hu et al., "Raman suppression in 5 kW fiber amplifier using long period fiber grating fabricated by CO2 laser," vol. 145, p. 107484, 2022.
[44]C.-H. Chen, T.-C. Tsao, J.-L. Tang, and W.-T. J. S. Wu, "A multi-D-shaped optical fiber for refractive index sensing," vol. 10, no. 5, pp. 4794-4804, 2010.
[45]G. Quero et al., "Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection," vol. 152, no. 2, pp. 196-205, 2011.
[46]H.-T. Yan, Q. Liu, Y. Ming, W. Luo, Y. Chen, and Y.-q. J. I. P. J. Lu, "Metallic grating on a D-shaped fiber for refractive index sensing," vol. 5, no. 5, pp. 4800706-4800706, 2013.
[47]R. Chu et al., "High extinction ratio D-shaped fiber polarizers coated by a double graphene/PMMA stack," vol. 25, no. 12, pp. 13278-13285, 2017.
[48]H.-Q. Liang, B. Liu, and J.-F. J. O. Hu, "An ultra-highly sensitive surface plasmon resonance sensor based on D-shaped optical fiber with a silver-graphene layer," vol. 149, pp. 149-154, 2017.
[49]Q. Wang, J.-Y. Jing, X.-Z. Wang, L.-Y. Niu, W.-M. J. I. T. o. I. Zhao, and Measurement, "A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation," vol. 69, no. 5, pp. 2218-2224, 2019.
[50]T. Khanikar, V. K. J. O. Singh, and Q. Electronics, "Gold grating assisted SPR based D-shaped single mode fiber for detection of liquid refractive index," vol. 51, no. 9, pp. 1-10, 2019.
[51]H. Zheng et al., "Residual thickness enhanced core-removed D-shaped single-mode fiber and its application for VOC evaporation monitoring," vol. 28, no. 10, pp. 15641-15651, 2020.
[52]X. Jin et al., "A strain sensor with low temperature crosstalk based on re-modulation of D-shaped LPFG," vol. 177, p. 109300, 2021.
[53]P. Pilla et al., "Long period grating working in transition mode as promising technological platform for label-free biosensing," vol. 17, no. 22, pp. 20039-20050, 2009.
[54]M. Janczuk-Richter et al., "Long-period fiber grating sensor for detection of viruses," vol. 250, pp. 32-38, 2017.
[55]H. Yu, Y. Chong, P. Zhang, J. Ma, and D. J. T. Li, "A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection," vol. 219, p. 121324, 2020.
[56]M. Janik et al., "Optical fiber aptasensor for label-free bacteria detection in small volumes," vol. 330, p. 129316, 2021.
[57]A. George, M. Amrutha, P. Srivastava, S. Sunil, V. Sai, and R. J. A. Srinivasan, "Development of a U-bent plastic optical fiber biosensor with plasmonic labels for the detection of chikungunya non-structural protein 3," vol. 146, no. 1, pp. 244-252, 2021.
[58]Z. Fang, K. Chin, R. Qu, and H. Cai, Fundamentals of optical fiber sensors. John Wiley & Sons, 2012.
[59]T. L. Singal, Optical fiber communications: principles and applications. Cambridge University Press, 2016.
[60]E. J. J. Snitzer, "Cylindrical dielectric waveguide modes," vol. 51, no. 5, pp. 491-498, 1961.
[61]D. J. A. o. Gloge, "Weakly guiding fibers," vol. 10, no. 10, pp. 2252-2258, 1971.
[62]R. Gafsi and M. A. J. O. f. t. El-Sherif, "Analysis of induced-birefringence effects on fiber Bragg gratings," vol. 6, no. 3, pp. 299-323, 2000.
[63]R. A. Kadhim, L. Yuan, H. Xu, J. Wu, and Z. J. I. S. J. Wang, "Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe 2 O 3 grating," vol. 20, no. 17, pp. 9816-9824, 2020.
[64]T. J. J. o. l. t. Erdogan, "Fiber grating spectra," vol. 15, no. 8, pp. 1277-1294, 1997.
[65]T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," JOSA A, vol. 14, no. 8, pp. 1760-1773, 1997.
[66]T. J. J. A. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," vol. 14, no. 8, pp. 1760-1773, 1997.
[67]H. A. Haus and W. J. P. o. t. I. Huang, "Coupled-mode theory," vol. 79, no. 10, pp. 1505-1518, 1991.
[68]W.-P. J. J. A. Huang, "Coupled-mode theory for optical waveguides: an overview," vol. 11, no. 3, pp. 963-983, 1994.
[69]H. Kogelnik and C. J. J. o. a. p. Shank, "Coupled‐wave theory of distributed feedback lasers," vol. 43, no. 5, pp. 2327-2335, 1972.
[70]H. J. B. S. T. J. Kogelnik, "Filter response of nonuniform almost‐periodic structures," vol. 55, no. 1, pp. 109-126, 1976.
[71]V. Mizrahi and J. E. J. J. o. l. t. Sipe, "Optical properties of photosensitive fiber phase gratings," vol. 11, no. 10, pp. 1513-1517, 1993.
[72]M. Matsuhara, K. Hill, and A. J. J. Watanabe, "Optical-waveguide filters: Synthesis," vol. 65, no. 7, pp. 804-809, 1975.
[73]M. Yamada and K. J. A. o. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," vol. 26, no. 16, pp. 3474-3478, 1987.
[74]K. A. Winick and J. E. J. I. J. o. Q. E. Roman, "Design of corrugated waveguide filters by Fourier-transform techniques," vol. 26, no. 11, pp. 1918-1929, 1990.
[75]P. Verly, J. Dobrowolski, W. J. Wild, and R. J. A. o. Burton, "Synthesis of high rejection filters with the Fourier transform method," vol. 28, no. 14, pp. 2864-2875, 1989.
[76]J. Xia, A. K. Jordan, and J. A. J. J. A. Kong, "Electromagnetic inverse-scattering theory for inhomogeneous dielectrics: the local reflection model," vol. 11, no. 3, pp. 1081-1086, 1994.
[77]K. A. J. A. o. Winick, "Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison," vol. 31, no. 6, pp. 757-764, 1992.
[78]J. L. Frolik and A. J. J. o. l. t. Yagle, "An asymmetric discrete-time approach for the design and analysis of periodic waveguide gratings," vol. 13, no. 2, pp. 175-185, 1995.
[79]P. S. J. Russell and T. Birks, "A Hamiltonian approach to propagation in chirped and non-uniform Bragg grating structures," 1995.
[80]L. J. J. A. Poladian, "Variational technique for nonuniform gratings and distributed-feedback lasers," vol. 11, no. 6, pp. 1846-1853, 1994.
[81]G. W. C. Kaye and T. H. Laby, Tables of physical and chemical constants and some mathematical functions. Longmans, Green and Company, 1926.
[82]S. P. Clark, Handbook of physical constants. Geological society of America, 1966.
[83]X. Shu, L. Zhang, and I. J. J. o. L. T. Bennion, "Sensitivity characteristics of long-period fiber gratings," vol. 20, no. 2, p. 255, 2002.
[84]陳景綸, "雷射輔助蝕刻型長週期光纖光柵之研製及應用," 碩士, 機械工程系, 國立高雄科技大學, 高雄市, 2019.[85]翁健傑, "變焦寫入冠狀結構技術之雷射輔助蝕刻長週期光纖光柵研究," 碩士, 機械工程系, 國立高雄科技大學, 高雄市, 2020.