[1]蔡政霖, "硬體實現支援向量機決策樹之預測與訓練," 國立高雄科技大學電子工程系(第一校區)碩士論文, 2022。[2]李昱興, "基於深度支援向量機之可解釋車流與事件辨識系統," 國立高雄科技大學電子工程系(第一校區)碩士論文, 2021。
[3]何錦威, "反覆線性內插於即時高解析度影像縮放之VLSI實現," 國立高雄第一科技大學綠能電路與積體電路設計與應用產業專班碩士論文,2014。[4]L. Hao et al., “Design and exploration of neural network microsystem based on SiP,” SN Applied Sciences, vol. 3, no. 9, Aug. 2021, doi: https://doi.org/10.1007/s42452-021-04766-3.
[5] H. Elmiligi, F. Gebali, and M. W. El-Kharashi, “Power-aware Mapping for 3D-NoC Designs Using Genetic Algorithms,” Procedia Computer Science, vol. 34, pp. 538–543, Jan. 2014, doi: https://doi.org/10.1016/j.procs.2014.07.065
[6]S. P. Kaur, M. Ghose, A. Pathak, and R. Patole, “A survey on scheduling and mapping techniques in 3D Network-on-chip,” arXiv:2211.02378 [cs], Nov. 2022, Accessed: Feb. 21, 2023. [Online]. Available: https://arxiv.org/abs/2211.02378
[7]K. S. Zaman, M. B. I. Reaz, S. H. M. Ali, A. A. A. Bakar, and M. E. H. Chowdhury, “Custom Hardware Architectures for Deep Learning on Portable Devices: A Review,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, 2021, doi: 10.1109/tnnls.2021.3082304
[8]T. Chen et al., “a small-footprint high-throughput accelerator for ubiquitous machine-learning,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 269–284, Apr. 2014, doi: https://doi.org/10.1145/2654822.2541967
[9]D. Liu et al., “A Polyvalent Machine Learning Accelerator,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 369–381, Mar. 2015, doi: https://doi.org/10.1145/2775054.2694358
[10]P. RANAWAKA, M. EKPANYAPONG, A. TAVARES, M. DAILEY, K. ATHIKULWONGSE, and V. SILVA, “High Performance Application Specific Stream Architecture for Hardware Acceleration of HOG-SVM on FPGA,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E102.A, no. 12, pp. 1792–1803, Dec. 2019, doi: 10.1587/transfun.e102.a.1792
[11]T. Kryjak, M. Komorkiewicz, and M. Gorgon, “Real-time hardware–software embedded vision system for ITS smart camera implemented in Zynq SoC,” Journal of Real-Time Image Processing, vol. 15, no. 1, pp. 123–159, May 2016, doi: 10.1007/s11554-016-0588-9
[12]A. N. Nirmal and K. Mariammal, “Efficient Filter Implementation Using Cutset Retiming and Pipelining Approaches,” Advances in Automation, Signal Processing, Instrumentation, and Control, pp. 2141–2153, 2021, doi: 10.1007/978-981-15-8221-9_199
[13]P. Patali and S. T. Kassim, “High throughput and energy efficient linear phase FIR filter architectures,” Microprocessors and Microsystems, vol. 87, p. 104367, Nov. 2021, doi: 10.1016/j.micpro.2021.104367.
[14]A. G. Blaiech, K. Ben Khalifa, C. Valderrama, M. A. C. Fernandes, and M. H. Bedoui, “A Survey and Taxonomy of FPGA-based Deep Learning Accelerators,” Journal of Systems Architecture, Jan. 2019, doi: https://doi.org/10.1016/j.sysarc.2019.01.007
[15]A. Solazzo, E. Del Sozzo, I. De Rose, M. De Silvestri, G. C. Durelli, and M. D. Santambrogio, “Hardware Design Automation of Convolutional Neural Networks,” 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Jul. 01, 2016. https://ieeexplore.ieee.org/document/7560201
[16] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A Scalable Deep Learning Accelerator Unit on FPGA,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2016, doi: https://doi.org/10.1109/tcad.2016.2587683
[17]M. Zhu, L. Liu, C. Wang, and Y. Xie, “CNNLab: a Novel Parallel Framework for Neural Networks using GPU and FPGA-a Practical Study with Trade-off Analysis,” arXiv:1606.06234 [cs], Jun. 2016, Accessed: May 12, 2023. [Online]. Available: https://arxiv.org/abs/1606.06234
[18] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi, “Caffeinated FPGAs: FPGA Framework For Convolutional Neural Networks,” arXiv:1609.09671 [cs], Sep. 2016, Accessed: May 12, 2023. [Online]. Available: https://arxiv.org/abs/1609.09671
[19]O. Sener and V. Koltun, “Multi-Task Learning as Multi-Objective Optimization,” arXiv:1810.04650 [cs, stat], Jan. 2019, Accessed: Jan. 29, 2023. [Online]. Available: https://arxiv.org/abs/1810.04650
[20]W. Hong, G. Li, S. Liu, P. Yang, and K. Tang, “Multi‐objective evolutionary optimization for hardware‐aware neural network pruning,” Fundamental Research, Aug. 2022, doi: https://doi.org/10.1016/j.fmre.2022.07.013
[21]R. Hourani, Ravi Jenkal, W. J. Davis, and W. E. Alexander, “Automated Design Space Exploration for DSP Applications,” Journal of Signal Processing Systemsvol, 56, no. 2–3, pp. 199–216, Sep. 2009, doi: https://doi.org/10.1007/s11265-008-0226-2
[22]Y. Cui, W. Zhang, V. Chaturvedi, W. Liu, and B. He, “Thermal-aware task scheduling for 3D-network-on-chip: A Bottom-to-Top scheme,” 2014 International Symposium on Integrated Circuits (ISIC), Dec. 01, 2014. https://ieeexplore.ieee.org/document/7029547
[23]V. Chaturvedi, A. K. Singh, W. Zhang, and T. Srikanthan, “Thermal-aware task scheduling for peak temperature minimization under periodic constraint for 3D-MPSoCs,” 2014 25nd IEEE International Symposium on Rapid System Prototyping, Oct. 01, 2014. https://ieeexplore.ieee.org/document/6966900
[24]Z. Zhu, V. Chaturvedi, A. K. Singh, W. Zhang, and Y. Cui, “Two-stage thermal-aware scheduling of task graphs on 3D multi-cores exploiting application and architecture characteristics,” 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 01, 2017. https://ieeexplore.ieee.org/document/7858343
[25]H. Ding and X. Gu, “Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem,” Computers & Operations Research, vol. 121, p. 104951, Sep. 2020, doi: https://doi.org/10.1016/j.cor.2020.104951
[26]P. Esfahanian and M. Akhavan, “GACNN: Training Deep Convolutional Neural Networks with Genetic Algorithm,” arXiv:1909.13354 [cs], Sep. 2019, Accessed: Feb. 20, 2023. [Online]. Available: https://arxiv.org/abs/1909.13354v1
[27]B. Tağtekin, M. U. Öztürk, and M. K. Sezer, “A Case Study: Using Genetic Algorithm for Job Scheduling Problem,” arXiv:2106.04854 [cs], Jun. 2021, Accessed: Feb. 20, 2023. [Online]. Available: https://arxiv.org/abs/2106.04854v1
[28]A. Mustapha, L. Mohamed, and K. Ali, “An Overview of Gradient Descent Algorithm Optimization in Machine Learning: Application in the Ophthalmology Field,” Communications in Computer and Information Science, pp. 349–359, 2020, doi: https://doi.org/10.1007/978-3-030-45183-7_27
[29]S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods From a Machine Learning Perspective,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3668–3681, Aug. 2020, doi: https://doi.org/10.1109/tcyb.2019.2950779
[30]M. F. Rego, J. C. E. M. Pinto, L. P. Cota, and M. J. F. Souza, “A mathematical formulation and an NSGA-II algorithm for minimizing the makespan and energy cost under time-of-use electricity price in an unrelated parallel machine scheduling,” PeerJ. Computer Science, vol. 8, p. e844, 2022, doi: https://doi.org/10.7717/peerj-cs.844
[31]J.Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 - International Conference on Neural Networks, 2019, doi: https://doi.org/10.1109/icnn.1995.488968
[32]J. K. Desbordes et al., “Dynamic production optimization based on transfer learning algorithms,” Journal of Petroleum Science and Engineering, vol. 208, p. 109278, Jan. 2022, doi: https://doi.org/10.1016/j.petrol.2021.109278
[33]K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: https://doi.org/10.1109/4235.996017
[34]M. Wasala and T. Kryjak, “Real-time HOG+SVM based object detection using SoC FPGA for a UHD video stream,” arXiv.org, Jun. 07, 2022. https://arxiv.org/abs/2204.10619#:~:text=Real-time%20HOG%2BSVM%20based%20object%20detection%20using%20SoC%20FPGA
[35]J. Durre, D. Paradzik, and H. Blume, “A HOG-based Real-time and Multi-scale Pedestrian Detector Demonstration System on FPGA,” FPGA '18: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Feb. 2018, doi: https://doi.org/10.1145/3174243.3174249
[36]N. Attarmoghaddam and K. F. Li, “An Area-Efficient FPGA Implementation of a Real-Time Multi-Class Classifier for Binary Images,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 4, pp. 2306–2310, Apr. 2022, doi: https://doi.org/10.1109/TCSII.2022.3148228.