|
[1]N.G. Orji , M. Badaroglu, B. M. Barnes , C. Beitia, B.D. Bunday, U. Celano, R.J. Kline, M. Neisser, Y. Obeng, A.E. Vladar., Metrology for the next generation of semiconductor devices, Nat. Electron., 1(10) (2018) 532–547. [2]K. Croes, Ch. Adelmann, C.J. Wilson, H. Zahedmanesh, O. Varela Pedreira, C. Wu, A. Leśniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Zs. Tőkei., Interconnect metals beyond copper: reliability challenges and opportunities, IEEE (IEDM), 18(114) (2018) 5.3.1-5.3.4. [3]K. Venkatraman, Y. Dordi, R. Akolkar., Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164(2) (2017) 104-109. [4]S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices, J. Mater. Sci., 30 (2019) 13855–13868. [5]The International Roadmap For Devices and System : 2021, IEEE (IRTS), 3 (2021) 13. [6]Y. Sakamoto, K. Kamada, J. Hamaguchi, A. Sano, Y. Numata, S. Kodaira, S. Toyoda, K. Suu, Improved Step Coverage of Cu Seed Layers by Magnetic-Field-Assisted Ionized Sputtering, J. Appl. Phys., 50 (2011) 05EA03-1-05EA03-3. [7]E. Pegoraro, A. Perrotta, G. Lorito, L. Bertarelli, B. N. Bozon, D. Deyo, V. Spreafico, Cu seed step coverage eution with target lifetime for long-throw self ionized physical vapor deposition chambers, Microelectron Eng, 256 (2022) 111717. [8]H. Huang, P. S. McLaughin, J.J. Kelly, C.C. Yang, R. G. Southwick, M. Wang, G. Bonilla, G. Karve, Time Dependent Dielectric Breakdown of Cobalt and Ruthenium Interconnects at 36nm Pitch, IEEE (IRPS), 19 (2019) 1-5. [9]O. Varela Pedreira, M. Stucchi, A. Gupta, V. Vega Gonzalez, M. van der Veen, S. Lariviere, C.J. Wilson, Zs Tőkei, K. Croes imec, Metal reliability mechanisms in Ruthenium interconnects, IEEE (IRPS), 20 (2020) 1-7. [10]S. Beyne, O.V. Pedreira, H. Oprins, I.D. Wolf, Zs. Tőkei, K. Croes, Electromigration Activation Energies in Alternative Metal Interconnects, IEEE (IRPS), 66(12) (2019) 5278-5283. [11]L. Cai, M. Zheng, Y. Lyu, W. Chen, Thermal-Aware EM Reliability for Advanced Metal Interconnects of Complementary FET, IEEE (IRPS), 69(5) (2022) 2573-2578. [12]Y. Kotsugi, S.M. Han, Y.H. Kim, T. Cheon, D.K. Nandi, R. Ramesh, N.K. Yu, K. Son, T. Tsugawa, S. Ohtake, R. Harada, Y.B. Park, B. Shong, S.H. Kim., Atomic Layer Deposition of Ru for Replacing Cu-Interconnects, Chem. Mater., 33 (2021) 5639–5651. [13]D. Tierno, O. V. Pedreira, C. Wu, N. Jourdan, L. Kljucar, Zs. Tőkei, K. Croes, Cobalt and Ruthenium drift in ultra-thin oxides, Microelectron Reliab., 100-101 (2019) 113407. [14]H.K. Lee, J. Y. Hur, Electroless copper electrolytes and its surface characteristics for semiconductor interconnects, Met. Mater. Int., 19 (2013) 821-827. [15]M.H. van der Veen, K. Vandersmissen, D. Dictus, S. Demuynck, R. Liu, X. Bin, P. Nalla, A. Lesniewska, L. Hall, K. Croes, L. Zhao, J. Bömmels, A. Kolics, Zs. Tökei., Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies, IEEE (IITC/MAM), 15 (2015) 25-28. [16]D. Choi, Potential of Ruthenium and Cobalt as Next-generation Semiconductor Interconnects, Korean J. Met. Mater., 56(8) (2018) 605-610. [17]S. Dutta, S. Beyne, A. Gupta, S. Kundu, S. V. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, C. J. Wilson, Zs. Tőkei, C. Adelmann., Sub-100 nm2 Cobalt Interconnects, IEEE (IRPS), 39(5) (2018) 731-734. [18]S. Ezzat, Chemistry and Structure of Ru/SiO2 and Ru/Al2O3 Interfaces, Electronic Theses and Dissertations., (2019) 6388. [19]L.H. Chen, D. Ando, Y. Sutou, D. Gall, J. Koike, NiAl as a potential material for liner-and barrier-free interconnect in ultrasmall technology node, Appl. Phys. Lett., 113(18) (2018) 183503-183506. [20]O.V. Pedreira, K. Croes, A. LeĞniewska, C. Wu, M.H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V.V. Gonzalez, J. Bömmels, Zs. TĘkei., Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, IEEE(IRPS), 6 (2017) 2.1-2.8. [21]C. Adelmann, L.G. Wen, A. Premkumar Peter, Y.K. Siew, Alternative metals for advanced interconnects, IEEE (IITC/AMC), 14 (2014) 173-176. [22]F. G. Pyzyna, A. Z. Zhang, F. Liu, Interconnect Material Choices for Future Scaled Devices, Adv. Sci., (2012) 29-35. [23]K. Sankaran, S. Clima, M. Mees, C. Adelmann, Zs. Tökei, G. Pourtois., Exploring alternative metals to Cu and W for interconnects: An ab initio insight, IEEE (IRPS), 14 (2014) 193-196. [24]W.G. Liang, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven, S. Dutta, M.I. Popovici, N. Heylen, I. Ciofi, K. Vanstreels, F.W. Østerberg, O. Hansen, D.H. Petersen, K. Opsomer, C. Detavernie, C.J. Wilson, S. Van Elshocht, K. Croes, J. Bömmels, Zs. Tőkei, C. Adelmann., Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper, ACS Appl. Mater. Interfaces, 8(39) (2016) 26119–26125. [25]S. Decoster, E. Camerotto, G. Murdoch, S. Kundu, Q.T. Le, Zs. Tőkei, G. Jurczak, F. Lazzarino., Patterning challenges for direct metal etch of ruthenium and molybdenum at 32 nm metal pitch and below, J. Vac. Sci. Technol. B, 40 (2022) 032802. [26]L. B. Loeb., Fundamental Processes of Electrical Discharge in Gases, Nature, 146(3710) (1940) 729-730. [27]T. Nelis, J. Pallosi, Glow Discharge as a Tool for Surface and Interface Analysis, Appl. Spectrosc. Rev, 41(3) (2006) 227-258. [28]L. Liljeholm, Reactive Sputter Deposition of Functional Thin Films, Fac. Sci. Tech. 945 (2012) 52. [29]D. Güttler, B. Abendroth, R. Grötzschel, W. Möller., Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation, Appl. Phys. Lett., 85(25) (2004) 6134. [30]D. Depla, R. De Gryse, Target poisoning during reactive magnetron sputtering: Part II: the influence of chemisorption and gettering, Surf. Coat. Technol., 183(2-3) (2004) 190-195. [31]O. A. Fouad, A. K. Rumaiz, S. I. Shah, Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics, Thin Solid Films, 517(19) (2009) 5689-5694. [32]C. Saringer, R. Franz, Effect of discharge power on target poisoning and coating properties in reactive magnetron sputter deposition of TiN, J. Vac. Sci. Technol. A, 34(4) (2016) 014517. [33]M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Funda-mentals and Applications, Cambridge, (1996). [34]Y. Chen, L. Wang, A. Pradel, M. Ribes, M.C. Record, A tammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem., 724 (2011) 55-61. [35]Q. Rayée, T. Doneux, C.B. Herman, Underpotential deposition of silver on gold from deep eutectic electrolytes, Electrochim. Acta, 237 (2017) 127-132. [36]D. Gokcen, S.E. Bae, and S. R. Brankovic, Kinetics of metal deposition via surface limited redox replacement reaction, ECS Trans., 35(21) (2011) 11-22. [37]D. Gokcen, S.E. Bae, S. R. Brankovic, Kinetics of metal deposition via surface-limited redox replacement reaction, ECS Trans., 35 (2011) 11-22. [38]S. M. Sayed, K. Juttner, Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly and mono-crystalline gold electrodes in acid solutuins, Electrochim. Acta, 11 (1983) 1635-1641. [39]M.Yang, H. Zhang, Q. Deng, Understanding the copper underpotential deposition process at strained gold surface, Electrochem commun., 82 (2017) 125-128. [40]J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [41]J.S. Fang, Y.S. Liu, T.S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [42]V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, M. Mathe, J.L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem, 589(2) (2006) 195-202. [43]D. Banga, N. Jarayaju, L. Sheridan, Y.G. Kim, B. Perdue, X. Zhang, Q. Zhang, J. Stickney, Electrodeposition of CuInSe2 (CIS) via electrochemical atomic layer deposition (E-ALD), Langmuir, 28 (2012) 3024-3031. [44]N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y.G. Kim, J.L. Stickney, PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD), Langmuir, 30 (2014) 3254-3263. [45]M.H. Fonticelli, D. Posadas, R.I. Tucceri, The influence of Cu adatoms on the Zn upd on polycrystalline thin gold film electrodes: a study using surface conductance measurements, J. Electroanal. Chem., 565 (2004) 359-366. [46]A. Joi, K.Venkatraman, K.C. Tso, D. Dictus, Y. Dordi, P.W. Wu, Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes, J Solid State Chem., 8(9) (2019) 516-521 [47]S.M. Rashwan, A.E. Mohamed, S.M.A. Wahaab, M.M. Kamel, Electrodeposition and characterization of thin layers of Zn–Co alloys obtained from glycinate baths, J. Appl. Electrochem., 33 (2003) 1035-1042. [48]N. Bogolowski, S. Huxter, Abd-El-Aziz A., Abd-El-L., G, A. Attard, H. Baltruschat, Copper underpotential deposition on Ru quasi-single-crystal films, J. Electroanal. Chem., 646(1-2) (2010) 68-74. [49]M. Nakamura, O. Endo, T. Ohta, M. Ito, Y. Yoda, Surface X-ray diffraction study of Cu UPD on Au(111) electrode in 0.5 M H2SO4 solution: the coadsorption structure of UPD copper, hydration water molecule and bisulfate anion on Au(111), Surf. Sci., 514(1-3) (2002) 227-233. [50]Q. Yuan, Y. Wakisaka, H. Ariga-Miwa, S. Takakusagi, K. Asakura, S. R. Brankovic, Reaction Stoichiometry and Mechanism of Pt Deposition via Surface Limited Redox Replacement of Copper UPD Layer on Au(111), J. Phys. Chem. C, 122(29) (2018) 16664-16673. [51]M.K. Amini, Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions, Int. J. Hydrog. Energy, 35(19) (2010) 10527-10538. [52]D.M. Kolb, M. Przasnyski, H. Gerischer, Underpotential deposition of metals and work function differences, Electroanal. Chem., 54 (1974) 25-38. [53]C.K. Chung, W.T. Chang, M.W. Liao, On work function and characteristics of anomalous electrodeposited nickel-cobalt films, Thin Solid Films, 519(7) (2011) 2075-2078. [54]Analytical Chemistry, Working Electrodes types, retrieved from https://reurl.cc/qg5ajD. [55]H.B. Yoav, R.O. Almog, Y. Sverdlov, M. Sternheim, S. Belkin, A. Freeman,Y.S. Diamand, Modified working electrodes for electrochemical whole-cell microchips, Electrochim. Acta, 82, 109 (2012) 109-114. [56]Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes:Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching notes. [57]A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications 2nd, John Wiley & Sons, Inc., (2001). [58]M. Morisue, Y. Fukunaka, E. Kusaka, R. Ishii, K. Kuribayashi, Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate, J. Electroanal. Chem. 559 (2003) 155-163. [59]D. Turnbull, and J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(71) (1949) 71-73. [60]W. Lorenz, Oscillographic overtage measurements, Z. Electrochem, 58 (1954) 912-918. [61]M. Fleischmann, H.R. Thirsk, The potentiostatic study of the growth of deposits on electrodes, Electrochim. Acta., 1(2-3) (1959) 146-160. [62]A. Bewick, M. Fleischmann, H.R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, J. Trans. Faraday, 58 (1962) 2200-2216. [63]B. Scharifker, and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [64]B.J. Hwang, R. Santhanam, Y.L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [65]B. Predel, O. Madelung, Ca-Cd – Co-Zr, Landolt-Börnstein Group IV Physical Chemistry, 5C (1993) 1-2. [66]T.P. Moffat, D. Wheeler, D. Josel, Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS, J. Electrochem. Soc., 151 (2004) 262-271. [67]B.J. Hinch, C. Koziol, J.P. Toennies, G. Zhang, Single and double layer growth mechanisms induced by quantum size effects in Pb films deposited on Cu (111), Vaccum, 42 (1991) 309-311. [68]B. Rashkova, B. Guel, R.T. PoÈ tzschke, G. Staikov, W.J. Lorenz, Electrodeposition of Pb on n-Si(111), Electrochimica. Acta, 43(19) (1998) 3021-3028. [69]P.C.T.D. Ajello, M.L. Munford, A.A. Pasa, Transient equations for multiple nucleation on solid electrodes: a stochastic description, J. Chem. Phys., 111(9) (1999) 4267-4272. [70]A. Milchev, Electrochemical phase formation on a foreign substrate—basic theoretical concepts and some experimental results, Contemp. Phys., 32(5) (1991) 321-332. [71]S. A. Wring, J. P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review, Analyst, 117(8) (1992). [72]F. La Mantia, P. Novák, A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies, J. Ger. Chem. Soc., 48(3) (2009) 528-532. [73]K.J.J. Mayrhofer, S.J. Ashton, J. Kreuzer, M. Arenz, An Electrochemical Cell Configuration Incorporating an Ion Conducting Membrane Separator between Reference and Working Electrode, Int. J. Electrochem. Sci., 48(3) (2009) 528-532. [74]M. Senda, T. Kakiuchi, T. Osaka, Electrochemistry at the interface between two immiscible electrolyte solutions, Electrochim. Acta, 36(2) (1991) 253-262. [75]C. Lee, S.K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochim. Acta, 265 (2018) 430-436. [76]C. Leighton, Electrolyte-based ionic control of functional oxides, Nature Mater., 18 (2019) 13-18. [77]C. Heubner, M. Schneider, Alexander Michaelis, Diffusion-Limited C-Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-Ion Batteries, Adv. Energy Mater., 10(2) (2020). [78]M. Okoshi, C.P. Chou, H. Nakai, Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries, J. Phys. Chem. B., 122(9) (2018) 2600-2609. [79]G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation:Part I general considerations, J. Electroanal. Chem., 138 (1982) 225-239. [80]D. Grujicic, B. Pesic, Electrodeposition of copper:the nucleation mechanisms, Electrochim. Acta, 47(18) (2002) 2901-2912. [81]D Grujicic, B Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon, Electrochim. Acta, 50(22) (2005) 4426-4443. [82]O. Renault, A Garnier, J Morin, N Gambacorti, High-resolution XPS spectromicroscopy study of micro-patterned gold-tin surfaces, Appl. Surf. Sci., 258(24) (2012) 10077-10083. [83]L. Li, H. Liu, Y. Yan, H. Zhu, H. Fang, X. Luo, Y. Dai,K. Yu, Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys, Int. J. Hydrog. Energy, 44(23) (2019) 12073-12084. [84]A. El Kharbachi, E.M. Dematteis, K. Shinzato, S.C. Stevenson, L.J. Bannenberg, M. Heere, C. Zlotea, P.A. Szilagyi, J.P. Bonnet, W. Grochala, D.H. Gregory, T. Ichikawa, M. Baricco, B.C. Hauback, Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage, J. Phys. Chem. C, 124(14) (2020) 7599-7607. [85]J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, J. Alloys Compd., 819 (2020) 152943. [86]M.P. Gomes, I. Costa, N. Pébère, J.L. Rossi, B. Tribollet, V. Vivier, On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy, Electrochim. Acta, 306 (2019) 61-70. [87]Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS, Corros. Sci., 165 (2020). [88]N. Aboudzadeh, C. Dehghanian, M. AliShokrgozar, Effect of electrodeposition parameters and substrate on morphology of Si-HA coating, Surf. Coat. Technol., 375 (2019) 341-351. [89]L. He, Y. Ji, J.Cheng, C. Wang, L.Jiang, X. Chen, H. Li, S. Ke, J. Wang, Effect of pH and Cl- concentration on the electrochemical oxidation of pyridine in low-salinity reverse osmosis concentrate: Kinetics, mechanism, and toxicity assessment, Chem. Eng., 449 (2022) 137669. [90]Y. Pang, H. Xie, Y. Sun, M.M. Titirici, G.L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms, J. Mater. Chem. A, 8(47) (2020) 24996-25016. [91]J.A.M. Oliveira, A. F. de Almeida, A.R.N. Campos, S. Prasad, J.J.N. Alves, R.A.C. Santana, Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition, J. Alloys Compd., 853 (2021) 157104. [92]M. Gu, L. Huang, F.Z. Yang, S.B. Yao,S.M. Zhou, Influence of chloride and PEG on electrochemical nucleation of copper, Int. J. Sur. Eng. Coat. , 80(6) (2002) 183-186. [93]J.B. Hiskey, Y. Maeda, A study of copper deposition in the presence of Group-15 elements by cyclic tammetry and Auger-electron spectroscopy, J. Appl. Chem., 33 (2003) 393-401. [94]Jamil A. Juma, The effect of organic additives in electrodeposition of Co from deep eutectic solvents, Arab. J. Chem., 14(4) (2021) 103036. [95]T.F Xiang, M.X. Zhang, C. Li, C.D. Dong, L.Yang, W.M. Chan, CeO2 modified SiO2 acted as additive in electrodeposition of Zn-Ni alloy coating with enhanced corrosion resistance, J. Alloys Compd., 736 (2018) 62-70. [96]H.F.Alesary, S. Cihangir, A.D. Ballantyne, R.C. Harris, D.P. Weston, A.P. Abbott, K.S.Ryder, Influence of additives on the electrodeposition of zinc from a deep eutectic solvent, Electrochim. Acta, 304 (2019) 118-130. [97]K.K. Maniam, S. Paul, Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids, Appl. Sci., 10(15) (2020) 5231. [98]J,J. Kelly, C,Y. Tian, A.C. West, Leveling and Microstructural Effects of Additives for Copper Electrodeposition, J. Electrochem. Soc., 146 (1999) 2540. [99]L. Guo, A. Radisic, P.C. Searson, Electrodeposition of Copper on Oxidized Ruthenium, J. Electrochem. Soc., 153 (2006) C840. [100]M.Zheng, M. Willeyand ,A.C. West, Electrochemical Nucleation of Copper on Ruthenium: Effect of Cl-, PEG, and SPS, ECS Solid State Lett., 8(10) C151. [101]D. Golodnitsky, Y. Rosenberg, A. Ulus, The role of anion additives in the electrodeposition of nickel–cobalt alloys from sulfamate electrolyte, Electrochim. Acta, 47(17) (2002) 2707-2714. [102]D. Golodnitsky, N.V. Gudin, G.A. yanuk, Study of Nickel‐Cobalt Alloy Electrodeposition from a Sulfamate Electrolyte with Different Anion Additives, J. Electrochem. Soc., 147(11) (2000) 4156. [103]Y. Hu, S. Deb, D. Li, Q. Huang, Effects of organic additives on the impurity and grain structure of electrodeposited cobalt, Electrochim. Acta, 368 (2021) 137594. [104]A.C.Frank, P.T.A. Sumodjo, Electrodeposition of cobalt from citrate containing baths, Electrochim. Acta, 132 (2014) 75-82. [105]R.F. Lopes, D.R. Saldanha, F. Mesquita, A.M.H. de Andrade, L.S. Dorneles, M.A. Tumelero, P. Pureur, Spin textures and magnetotransport properties in cobalt/ruthenium and cobalt/palladium bilayers, J. Magn. Magn. Mater., 519 (2021) 167447. [106]E. Abualgassem, M. Maarouf, A. Bake, D.Cortie, K. Alam, M. BaseerHaider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, J. Magn. Magn. Mater., 550 (2022) 169023. [107]M. Dvořáková, R. Perekrestov, P. Kšírová, J. Balabánová, K. Jirátová, J. Maixner, P. Topka, J. Rathouský, M. Koštejn, M. Čada, Z. Hubička, F.Kovanda, Preparation of cobalt oxide catalysts on stainless steel wire mesh by combination of magnetron sputtering and electrochemical deposition, Catal. Today, 334 (2019) 13-23. [108]F. Moyo, J.W.van der Merwe, D. Wamwangi, Enhanced adhesion of anticorrosion ruthenium films deposited by RF sputtering on 304L stainless steel, Surf. Coat. Technol., 438 (2022) 128381. [109]J.H. Moon, S. Kim, T. Kim, Y.S. Jeon, Y. Kim, J.P. Ahn, Y.K. Kim, Electrical resistivity eution in electrodeposited Ru and Ru-Co nanowires, J. Mater. Sci. Technol., 105 (2022) 17-25. [110]R. Gusley, K. Sentosun, S. Ezzat, K.R. Coffey, A.C. West, K. Barmak, Electrodeposition of Epitaxial Co on Ru(0001)/Al2O3(0001), J. Electrochem. Soc., 166 (2019) 875. [111]M. Rakap, Catalytic hydrolysis of hydrazine borane to release hydrogen by cobalt-ruthenium nanoclusters, Int. J. Hydrog. Energy, 45(31) (2020) 15611-15617. [112]C. Thambidurai, Y.G. Kim, J.L.Stickney, Electrodeposition of Ru by atomic layer deposition (ALD), Electrochim. Acta, 53(21) (2008) 6157-6164. [113]J. Nutariya, E. Kuroiwa, D. Takimoto, Z.R. Shen, D. Mochizuki, W. Sugimoto, Model electrode study of Ru@Pt core-shell nanosheet catalysts: Pure two-dimensional growth via surface limited redox replacement, Electrochim. Acta, 283 (2018) 826-833. [114]M.M. Momeni, M. Akbarnia, Photo-assisted electrodeposition of NiMoZn on hematite nanostructures and their photoelectrochemical application as photoanode for corrosion protection of stainless steel, J. Alloys Compd., 856 (2021) 158254. [115]S. Ambrozik, B. Rawlings, N. Vasiljevic, N.Dimitrov, Metal deposition via electroless surface limited redox replacement, Electrochem. Commun., 44 (2014) 19-22. [116]Y. He, C. J. Weststrate, D. Luo, J. W. Niemantsverdriet, K. Wu, J. Xu, Y. Yang, Y.W. Li, X.D. Wen, Carbon monoxide adsorption on cobalt overlayers on a Si(1 1 1) surface studied by STM and XPS, Appl. Surf. Sci., 569 (2021) 151045. [117]A. Sarnecki, P. Adamski, A. Albrecht, A. Komorowska, M. Nadziejko, D. Moszyński, XPS study of cobalt-ceria catalysts for ammonia synthesis – The reduction process, Vacuum, 155 (218) 434-438. [118]A. Kudielka, M. Schmid, B.P. Klein, C. Pietzonka, J. Michael Gottfried, B. Harbrecht, Nanocrystalline cobalt hydroxide oxide: Synthesis and characterization with SQUID, XPS, and NEXAFS, J. Alloys Compd., 824 (2020) 153925. [119]S. Budi, B. Kurniawan, D.M. Mott, S. Maenosono, A.A. Umar, A. Manaf, Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film, Thin Solid Films, 642 (2017) 51-57. [120]J. Balcerzak, W. Redzynia, J. Tyczkowski, In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films, Appl. Surf. Sci., 426 (2017) 852-855. [121]P. Froment, M.J. Genet, M. Devillers, Surface reduction of ruthenium compounds with long exposure to an X-ray beam in photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 104(1-3) (1999) 119-126. [122]S. S. Naghavi, V. I. Hegde, C. Wolverton, Diffusion coefficients of transition metals in fcc cobalt, Acta Mater., 132(15) (2017) 467-478. [123]A. Ghahremaninezhad, A. Dolati, Diffusion-Controlled Growth Model for Electrodeposited Cobalt Nanowires in Highly Ordered Aluminum Oxide Membrane, ECS Trans., 28(17) (2010) 13-25. [124]L.H. Mendoza Huizar, J. Robles, M.P. Pardavé, Nucleation and growth of cobalt onto different substrates: Part II. The upd-opd transition onto a gold electrode, J. Electroanal. Chem., 545 (2003) 39-45. [125]L.Yu, R. Akolkar, Communication—Underpotential Deposition of Lead for Investigating the Early Stages of Electroless Copper Deposition on Ruthenium, J. Electrochem. Soc., 163(6) (2016) 247-249. [126]L.H.M. Huizar, J. Robles, M.P. Pardave, Nucleation and growth of cobalt onto different substrates Part I. Underpotential deposition onto a gold electrode, J. Electroanal. Chem., 521 (2002) 95-106. [127]Q. Song, Y. Liu, L.G. Zhang, Z.M. Xu, Selective electrochemical extraction of copper from multi-metal e-waste leaching solution and its enhanced recovery mechanism, J. Hazard. Mater., 407 (2021) 124799. [128]O. Varela Pedreira, M. Stucchi, A. Gupta, V. Vega Gonzalez, M. van der Veen, S. Lariviere, C.J. Wilson, Zs. Tőkei, K. Croes, Metal reliability mechanisms in Ruthenium interconnects, IEEE (IRPS), 20 (2020) 1-7. [129]S. Beyne, S. Dutta, O.V. Pedreira, N. Bosman, C. Adelmann, I.D. Wolf, Zs. Tokei, K. Croes, The first Observation of p-type Electromigration Failure in full Ruthenium Interconnects, IEEE (IRPS), 18 (2018) 6D.7-1–6D.7-9. [130]F. Griggio, J. Palmer, F. Pan, N. Toledo, A. Schmitz, I. Tsameret, R. Kasim, G. Leatherman, J. Hicks, A. Madhavan, J. Shin, J. Steigerwald, A. Yeoh, C. Auth, Reliability of dual-damascene local interconnects featuring cobalt on 10 nm logic technology, IEEE (IRPS), 18 (2018) 6E.3-1–6E.3-5. [131]A.H. Simon, T. Bolom, C. Niu, F. H. Baumann, C.K. Hu, C. Parks, J. Nag, H. Kim, J.Y. Lee, C.C. Yang, S. Nguyen, H.K. Shobha, T. Nogami, S. Guggilla, J. Ren, D. Sabens, J.F. AuBuchon, Electromigration comparison of selective CVD cobalt capping with PVD Ta(N) and CVD cobalt liners on 22nm-groundrule dual-damascene Cu interconnects, IEEE (IRPS), 13 (2013) 3F.4.1–3F.4.6.
|