中華民國養雞協會,2021,打破殼蛋時,會有蛋白稀薄化的現象,原因何在?。http://www.poultry.org.tw/pageinfo/190
中華民國養雞協會,2021,何謂蛋黃指數(Ylok index)?何謂蛋白指數(Albumen index)?。http://www.poultry.org.tw/pageinfo/166
中華民國養雞協會,2021,洗選蛋的大小如何決定?。http://www.poultry.org.tw/pageinfo/119
中華民國養雞協會,2021,為何蛋有各種不同大小?。http://www.poultry.org.tw/pageinfo/118
丘志威、吳定峰,2005,食品微生物學精要(修訂版),藝軒圖書出版社,新北市。
古叡淳,2021,利用旋切式微氣泡產生系統結合常壓空氣電漿束製備電漿微氣泡水之研究,國立交通大學機械工程學系碩士論文。江大雄、邱子宜、薛惠文、楊舒涵,2020,2018年新北市某飯店員工集體發生沙門氏菌食品中毒事件,衛生福利部疾病管制署,第36卷第9期,131-137。
行政院農業委員會(農委會),2016,雞蛋斑點是自然現象,不影響品質,也不能作為判定感染沙門氏菌。https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=5445
行政院農業委員會(農委會),2020,洗選鮮蛋逐顆噴印標示111年1月1日正式啟動,農委會畜牧處。https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=8592
行政院農業委員會(農委會),2020,農業統計資料。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
行政院農業委員會(農委會),2020,雞蛋溯源 衛生安全有保障,農委會畜牧處。https://www.coa.gov.tw/ws.php?id=2503857
李彥儀、林孜懿、許珊瑋、黃琳晶、黃婉婷、廖盈淑、邱乾順,2018,2016年11月金門縣某麵包店腹瀉群聚事件調查報告,衛生福利部疾病管制局,第34卷第9期,147-152。
林鴻秀,2020,電漿活化水對帶殼雞蛋上沙門氏桿菌之殺菌效果與鮮度影響,國立高雄科技大學水產食品科學研究所碩士論文。食品安全資訊網,2015,食安小資訊:破除雞蛋的迷思,行政院食品安全辦公室。https://www.ey.gov.tw/ofs/15881103EFD02C4/fde77df0-18ff-4d4b-b255-4288d98a1a38
徐詮亮、林淑瑗、饒家麟、顏裕鴻、王聯輝、蔡碧仁、鄔文盛、蕭泉源、林麗雲、陳時欣,2015,食品加工學,華格那企業有限公司,26-36頁。
許世明,2020,量產型電漿機台對雞蛋上沙門氏桿菌之殺菌效果與鮮度之影響,國立高雄科技大學水產食品科學研究所碩士論文。通用檢驗科技股份有限公司(Société Générale de Surveillance, SGS),2021,食品指標性病原菌介紹:沙門氏菌,SGS食品服務部。https://msn.sgs.com/Knowledge/FOOD/6062
陳宗佑,2003,台灣地區屬傷寒沙門氏菌之分子流行病學研究1998~2002年,中國醫藥學院環境醫學研究所碩士論文。陳怡兆,2010,蛋之形成、構造及成分,行政院農委會農業知識入口網。https://kmweb.coa.gov.tw/subject/subject.php?id=30328
曾浩洋、陳淑莉、何中平、黃乃芸、劉慧蓉、陳建元、李貽琳、黃寶雄、蔡順仁、科員悌,2003,食品衛生與安全,華格那企業有限公司,170-172。
黃登福、陳樹功、葉彥宏、施養志、林錫斌、廖萱蓉、呂雅蕙、蔡永祥、謝宥諒、林仲聖、周薰修、陳石松、黃書政、謝承紘、黃鈺茹、簡希文、林欣榮,2019,新編食品衛生與安全(四版),華格那企業有限公司,21-23。
楊悠娟,2016,飲食文化與化學:蛋的化學(上),臺灣化學教育,第12期。http://chemed.chemistry.org.tw/?p=14990
嘉義縣政府,2018,「嘉義豆奶攤民雄店」流病調查報告確定為食品中毒案件,新聞行銷處公共關係科。https://www.cyhg.gov.tw/News_Content.aspx?n=20C1A3DAF6A74FCE&s=243C31FCC3DB9857
蔡宜臻、陳婉青、廖盈淑、邱乾順、陳珮甄、簡玉潔、鄭宏偉,2018,2014年新北市淡水區沙門氏菌群聚感染溯源調查,衛生福利部疾病管制署,第34卷第9期,153-158。
衛生福利部(衛福部),2017,生鮮蛋品洗選作業指引,衛生福利部(衛授食字第1061301719號函發布)。
衛生福利部,2017,生鮮蛋品洗選作業指引,臺北市,臺灣。
衛生福利部食品藥物管理署 (衛福部食藥署),2021,食品中微生物衛生標準。
衛生福利部食品藥物管理署(衛福部食藥署),2019,歷年食品中毒資料。 https://www.fda.gov.tw/TC/siteContent.aspx?sid=323
衛生福利部疾病管制署(疾管署),1998,沙門氏菌與食物中毒,第14卷第6期,196-207。
蕭淑珊,2014,蛋殼粉對於截切蔬果之殺菌與保鮮作用,國立高雄海洋科技大學水產食品科學研究所碩士論文。Agarwal, A., Ng, W. J. & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84(9), 1175-1180.
Agarwal, A., Xu, H., Ng, W. J. and Liu, Y. (2012). Biofilm detachment by self-collapsing air microbubbles: a potential chemical-free cleaning technology for membrane biofouling, Journal of Materials Chemistry, 22, 2203-2207.
Akata, I., Torlak, E. & Erci, F. (2015). Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom, Postharvest Biology and Technology, 109, 40-44.
Al-Ajeeli, M. N., Taylor, T. M., Alvarado, C. Z. & Coufal, C. D. (2016). Comparison of eggshell surface sanitization technologies and impacts on consumer acceptability, Poultry Science, 95(5), 1191-1197.
Al-Bahry, S. N., Mahmoud, I. Y., Al-Musharafi, S. K. & Paulson J. R. (2015). Consumption of contaminated eggs: a public health concern, Medical Research Archives, 2(4), 1-22.
Allende, A., McEvoy, J., Tao, Y. & Luo, Y. (2009). Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro, Food Control, 20(3), 230-234.
Allende, A., Selma, M.V., López-Gálvez, F., Villaescusa, R. & Gil, M.I. (2008). Role of commercial sanitizers and washing systems on epiphytic microorganisms and sensory quality of fresh-cut escarole and lettuce, Postharvest Biology and Technology, 49(1), 155-163.
Antunes, P., Réu, C., Sousa, J. C., Peixe, L. & Pestana, N. (2003). Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents, International Journal of Food Microbiology, 82(2), 97-103.
Bando, Y., Takahashi, Y., Luo, W., Wang, Y., Yasuda, K., Nakamura, M., Funato, Y. & Oshima, M. (2008). Flow characteristics in concurrent upflow bubble column dispersed with micro-bubbles, Journal of Chemical Engineering of Japan, 41(7), 562-567.
Bang, J., Hong, A., Kim, H., Beuchat, L. R., Rhee, M. S., Kim, Y. & Ryu, J. H. (2014). Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying, International Journal of Food Microbiology, 191, 129-134.
Bennett, C. D. (1993). Measuring table egg shell quality with one specific gravity salt solution, Journal of Applied Poultry Research, 2(2), 130-134.
Bennett, C. D. (1993). Measuring Table Egg Shell Quality with One Specific Gravity Salt Solution, Journal of Applied Poultry Research, 2(2), 130-134.
Betancor, L., Pereira, M., Martinez, A., Giossa, G., Fookes, M., Flores, K., Barrios, P., Repiso, V., Vignoli, R., Cordeiro, N., Algorta, G., Thomson, N., Maskell, D., Schelotto, F. & Chabalgoity, J. A. (2010). Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica Serovar Enteritidis, Journal of Clinical Microbiology, 48, 2413–2423.
Bhale, S., No, H. K., Prinyawiwatkul, W., Farr, A. J., Nadarajah, K. & Meyers, S. P. (2003). Chitosan Coating Improves Shelf Life of Eggs, Journal of Food Science, 68(7), 2378-2383.
Bialka, K. L. & Demirci, A. (2007). Efficacy of aqueous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries, Journal of Food Protection, 70(5), 1088-1092.
Bradley, F. and King, A. (2016). Egg Basics for the Consumer: Packaging, Storage, and Nutritional Information, UCANR Publications, Novato, CA, 8154.
Braun, P. G., Fernandez, N. & Fuhrmann, H. (2011). Investigations on the Effect of Ozone as a Disinfectant of Egg Surfaces, Journal of the International Ozone Association, 33(5), 374-378.
Byun, K. H., Han, S. H., Yoon, J. W., Park, S. H. & Ha, S. D. (2021). Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin, Food Control, 123, 107838.
Caner, C. & Cansiz, Ö. (2008). Chitosan coating minimises eggshell breakage and improves egg quality, Journal of the Science of Food and Agriculture, 88(1), 56-61.
Caner, C. & Yüceer, M. (2015). Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage, Poultry Science, 94(7),1665-1677.
CDC (2014). National Salmonella Surveillance Annual Report in 2012, US Department of Health and Human Services, CDC, Atlanta, GA.
CDC. (2000). Outbreaks of Salmonella serotype Enteritidis infection associated with eating raw or undercooked shell eggs—United States, 1996–1998, MMWR Morb Mortal Wkly Rep., 49, 73-79.
CDC. (2010). Investigation update: Multistate outbreak of human Salmonella Enteritidis infections associated with shell eggs. www.cdc.gov/salmonella/enteritidis/
Chawla, A. S., Kasler, D. R., Sastry, S. K. & Yousef, A. E. (2012). Microbial decontamination of food using ozone, In: Microbial Decontamination in the Food Industry, Demirci, A. & Ngadi, M. O. (Ed.), Woodhead Publishing, Cambridge, UK, (17), 495-532.
Cho, Y., Muhlisin, M., Choi, J. H., Hahn, T. & Lee, S. K. (2014). Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature, Korean Journal for Food Science of Animal Resources, 34(4), 525-532.
Chousalkar, K., Gast, R., Martelli, F. & Pande, V. (2018). Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand, Critical Reviews in Microbiology, 44(3), 290-303.
Chu, L. B., Xing, X. H., Yu, A. F. , Zhou, Y. N., Sun, X. L. & Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles, Chemosphere, 68(10), 1854-1860.
Chu, L. B., Yan, S. T., Xing, X. H., Yu, A. F., Sun, X. L. & Jurcik, B. (2008). Enhanced sludge solubilization by microbubble ozonation, Chemosphere, 72(2), 205-212.
Costilow, R. N., Uebersax, M. A. & Ward, P. J. (1984). Use of chlorine dioxide for controlling microorganisms during the handling and storage of fresh cucumbers, Journal of Food Science, 49(2), 396-401.
Dasan, B. G., Yildirim, T. & Boyaci, I.H. (2018). Surface decontamination of eggshells by using non-thermal atmospheric plasma, International Journal of Food Microbiology, 266, 267-273.
Davies, R. & Wales, A. (2010). Investigations into Salmonella contamination in poultry feedmills in the United Kingdom, Journal of Applied Microbiology, 109(4), 1430-1440.
De Kengt, L. V., Pires, S. M. & Hald, T. (2015). Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model, Epidemiology and Infection, 143(6), 1175-1186.
De Reu, K., Grijspeerdt, K., Messens, W., Heyndrickx, M., Uyttendaele, M., Debevere, J. & Herman, L. (2006). Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella Enteritidis, International Journal of Food Microbiology, 112(3), 253-260.
Destatis. (2014). Legehennen und Eiererzeugung von 2005 bis 2014, Available from: https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/TiereundtierischeErzeugung/Tabellen/LegehennenEier.html
Donovan, J. W., Davis, J. G. & Wiele, M. B. (1972). Viscosimetric studies of alkaline degradation of ovomucin, Journal of Agricultural and Food Chemistry, 20(2), 223-228.
Dukhin, A. S. & Goetz, P. J. (2010). Chapter 2 - Fundamentals of Interface and Colloid Science, Studies in Interface Science, 24, 21-89.
Eckert, A. (2016). Details ID:21918, Public Health Image Library, CDC. https://phil.cdc.gov/Details.aspx?pid=21918
Eddin, A. S., Ibrahim, S. A. & Tahergorabi, R. (2019). Egg quality and safety with an overview of edible coating application for egg preservation, Food Chemistry, 296, 29-39.
EFSA & ECDC. (2015). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013, EFSA Journal, 13(1), 3991.
EFSA & ECDC. (2019). The European Union one health 2018 zoonoses report, EFSA Journal, 17(12), e05926.
FDA. (2013). 2010 Salmonella Enteritidis outbreak in shell eggs. www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm222684.htm
Fu, Y., Deering, A. J., Bhunia, A. K. & Yao, Y. (2017). Biofilm of Escherichia coli O157:H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite, International Journal of Food Microbiology, 260, 11-16.
Funk, E. M. (1948). The relation of the Yolk Index Determined in Natural Position to the Yolk Index as Determined after Separating the Yolk from the Albumen, Poultry Science, 27(3), 367.
Gantois, I., Eeckhaut, V., Pasmans, F., Haesebroucj, F., Ducatelle, R. & Van Immerseel, F. (2008). A comparative study on the pathogenesis of egg contamination by different serotypes of Salmonella, Avian Pathology, 37(4), 399-406.
Gast, R. K. & Holt, P. S. (2001). Assessing the frequency and consequences of Salmonella enteritidis deposition on the egg yolk membrane, Poultry Science, 80(7), 997-1002.
Gast, R. K., Regmi, P., Guraya, R., Jones, D. R., Anderson, K. E. & Karcher, D. M. (2019). Contamination of eggs by Salmonella Enteritidis in experimentally infected laying hens of four commercial genetic lines in conventional cages and enriched colony housing, Poultry Science, 98(10), 5023-5027.
Gingerich, E. (2010). Preharvest food safety in the US shell egg industry, Proc. 113 Annu. Meet. US Animal Health Association, San Diego, CA, Richardson Printing, Kansas City, MO, 283-287.
Gole, V. C., Roberts, J. R., Sexton, M., May, D., Kiermeier, A. & Chousalkar, K. K. (2014). Effect of egg washing and correlation between cuticle and egg penetration by various Salmonella strains, International Journal of Food Microbiology, 182-183, 18-25.
Gomes, I. B., Simões, M. & Simões, L. C. (2016). The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states, Science of the Total Environment, 565, 40-48.
Guzel-Seydim, Z. B., Greene, A. K. & Seydim A. C. (2004). Use of ozone in the food industry, LWT-Food Science and Technology, 37(4), 453-460.
Han, M. & Dockko, S. (1998). Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency, KSCE Journal of Civil Engineering, 2, 461-466.
Hartung, M., Tenhagen, B. A. & Käsbohrer, A. (2015). Erreger von Zoonosen in Deutschland 2013, Bundesinstitut für Risikobewertung, Berlin, 63-65.
Hasegawa, H., Nagasaka, Y. & Kataoka, H. (2008). Electrical potential of microbubble generated by shear flow in pipe with slits, Fluid Dynamics Research, 40(7-8), 554-564.
Haugh, R. R. (1937). The Haugh unit for measuring egg quality, Food Technology, 5, 356-367.
Heath, J. L. (1975). Investigation of Changes in Yolk Moisture, Poultry Science, 54(6), 2007-2014.
Heath, J. L. (1977). Chemical and Related Osmotic Changes in Egg Albumen During Storage, Poultry Science, 56(3), 822-828.
Hill, A. G. & Rice, R. G. (1982). Historical background, properties and applications, In: Ozone treatment of water for cooling application, Rice, R. G. (Ed.), Ann Arbor Science Publishers, Ann Arbor, MI, 1-37.
Hogue, A., White, P., Guard-Petter, J., Schlosser, W., Gast, R., Ebel, E., Farrar, J., Gomez, T., Madden, J., Madison, M., McNamara, A. M., Morales, R., Parham, D., Sparling, P., Sutherlin, W. & Swerdlow, D. (1997). Epidemiology and control of egg-associated Salmonella Enteritidis in the United States of America, Revue Scientifique et Technique, 16, 542-553.
Hsu, M. S., Wu, M. Y., Huang, Y. T. & Liao, C. H. (2016). Efficacy of chlorine dioxide disinfection to non-fermentative Gram-negative bacilli and non-tuberculous mycobacteria in a hospital water system, Journal of Hospital Infection, 93(1), 22-28.
Hutchison, M. L., Gittins, J., Sparks, A. W., Humphrey, T. J., Burton, C. & Moore, A. (2004). An assessment of the microbiological risks involved with egg washing under commercial conditions. Journal of Food Protection, 67(1), 4-11.
Ikeura, H., Hamasaki, S. & Tamaki, M. (2013). Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves, Food Chemistry, 138(1), 366-371.
Ikeura, H., Kobayashi, F. & Tamaki, M. (2011). Removal of residual pesticides in vegetables using ozone microbubbles, Journal of Hazardous Materials, 186(1), 956-959.
Inatsu, Y., Bari, Md. L. & Kawamoto, S. (2007). Application of acidified sodium chlorite prewashing treatment to improve the food hygiene of lightly fermented vegetables, Japan Agricultural Research Quarterly, 41(1), 17-23.
Jiang, S., Zhu, T., Jia, D., Yao, J. & Jiang, Y. (2018). Effect of egg freshness on their automatic orientation, Journal of the Science of Food and Agriculture, 98(7), 2642-2650.
Jin, J., Wang, R., Tang, J., Yang, L., Feng, Z., Xu, C., Yang, F. & Gu, N. (2020). Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 589, 124430.
John, A., Brookes, A., Carra, I., Jefferson, B. & Jarvis, P. (2020). Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application, Critical Reviews in Environmental Science and Technology, 52(9), 1561-1603.
John, A., Carra, I., Jefferson, B., Jodkowska, M., Brookes, A. & Jarvis, P. (2022). Are microbubbles magic or just small? a direct comparison of hydroxyl radical generation between microbubble and conventional bubble ozonation under typical operational conditions, Chemical Engineering Journal, 435(1), 134854.
Jones, D. R. & Musgrove, M. T. (2005). Effects of extended storage on egg quality factors, Poultry Science, 84(11), 1774-1777.
Jones, D. R., Anderson, K. E., Curtis, P. A. & Jones, F. T. (2002). Microbial contamination in inoculated shell eggs: I. Effects of layer strain and hen age, Poultry Science, 81(5), 715-720.
Jothinathan, L., Cai, Q. Q., Ong, S. L. & Hu, J. Y. (2021). Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process, Chemosphere, 263, 127980.
Kalchayanand, N., Worlie, D. & Wheeler, T. (2019). A Novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef, Journal of Food Protection, 82, 1874-1878.
Kalchayanand, N., Worlie, D. & Wheeler, T. (2019). A Novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef, Journal of Food Protection, 82(11), 1874-1878.
Karaca, H. & Velioglu, Y. S. (2007). Ozone applications in fruit and vegetable processing, Food Reviews International, 23(1), 91-106.
Karaca, H. & Velioglu, Y. S. (2014). Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley, Postharvest Biology and Technology, 88, 46-53.
Karoui, R., Kemps, B., Bamelis, F., Ketelaere, B. D., Decuypere, E. & Baerdemaeker, J. D. (2006). Methods to evaluate egg freshness in research and industry: A review, European Food Research and Technology, 222, 727-732.
Khadre, M. A., Yousef, A. E. & Kim, J. G. (2001). Microbiological Aspects of Ozone Applications in food: A Review, Journal of Food Science, 66(9), 1242-1252.
Khuntia, S., Majumder, S. K, & Ghosh, P. (2012). Microbubble-aided water and wastewater purification: A review, Reviews in Chemical Engineering, 28(4-6), 191-221.
Kim, H., Yum, B., Yoon, S. S., Song, K. J., Kim J. R., Myeong, D., Chang, B. & Choe, N. H. (2016). Inactivation of Salmonella on eggshells by chlorine dioxide gas, Korea Food Science of Animal Resources, 36(1), 100-108.
Kim, J. G. (1998). Ozone as an antimicrobial agent in minimally processed food, PhD thesis of Ohio State University, Ohio, USA.
Kim, J. G., Yousef, A. E. & Khadre, M. A. (2003). Ozone and its current and future application in the food industry, Advances in Food and Nutrition Research, 45, 167-218.
Kim, M., Park, S. Y. & Ha, S. D. (2016). Synergistic effect of a combination of ultraviolet–C irradiation and sodium hypochlorite to reduce Listeria monocytogenes biofilms on stainless steel and eggshell surfaces, Food Control, 70, 103-109.
Kimura, T. & Ando, T. (2002). Physical control of chemical reaction by ultrasonic waves, Ultrasonic Technology, 14, 7-8.
Klintham, P., Tongchitpakdee, S., Chinsirikul, W. & Mahakarnchanakul, W. (2017). Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables, Food control, 77, 260-269.
Klintham, P., Tongchitpakdee, S., Chinsirikul, W. & Mahakarnchanakul, W. (2018). Two-step washing with commercial vegetable washing solutions, and electrolyzed oxidizing microbubbles water to decontaminate sweet basil and Thai mint: A case study, Food control, 94, 324-330.
Knapp, J. E. & Battisti, D. L. (2001). Chlorine dioxide, In: Disinfection, Sterilization and Preservation, Block, S. S. (Ed.), Lippincott Williams and Wilkins, Pennsylvania, USA, 10, 215-227.
Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T. & Tamaki, M. (2011). Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum, Crop Protection, 30(11), 1514-1518.
Kobayashi, T., Fujioka, S., Tanaka, S. & Terasaka, K. (2022). Microbubble generation with rapid dissolution of ammonia (NH3)-hydrogen (H2) mixed gas fed from a nozzle into water, Chemical Engineering Science, 248(Part B), 117155.
Kouam, M. K., Biekop, M. H., Katte, B. & Teguia, A. (2018). Salmonella status of table eggs in commercial layer farms in Menoua Division, West region of Cameroon, Food control, 85, 345-349.
Kukizaki, M. & Goto, M. (2006). Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes, Journal of Membrane Science, 281(1-2), 386-396.
Kwack, Y., Kim, K. K., Hwang, H. & Chun, C. (2014). An ozone micro-bubble technique for seed sterilization in alfalfa sprouts, Korean Journal of Horticultural Science and Technology 32, 901-905.
Lee, N. Y., Kim, S. W. & Ha, S. D. (2014). Synergistic effects of ultrasound and sodium hypochlorite (NaOCl) on reducing Listeria monocytogenes ATCC19118 in broth, stainless steel, and iceberg lettuce, Foodborne Pathogens and Disease, 11(7), 581-587.
Lee, S. H., No, H. K. & Jeong, Y. H. (1996). Effect of chitosan coating on quality of egg during storage, Journal of the Korean Society of Food Science and Nutrition, 25(2), 288-293.
Li, C., Xie, Y., Guo, Y., Cheng, Y., Yu, H., Qian, H. & Yao, W. (2021). Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix, Food Control, 120, 107548.
Li, P., Takahashi, M. & Chiba, K. (2009). Enhanced free-radical generation by shrinking microbubbles using a copper catalyst, Chemosphere, 77(8), 1157-1160.
Li, P., Wu, C., Yang, Y., Wang, Y., Yu, S., Xia, S. & Chu, W. (2018). Effects of microbubble ozonation on the formation of disinfection by-products in bromide-containing water from Tai Lake, Separation and Purification Technology, 193, 408-414.
Li, X. (2013). The haugh unit is an important indicator of the egg quality inspection, Journal of Inspection & Quarantine, 23 (2), 48-49.
Liao, L. B., Chen, W. M. & Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water, Journal of Food Engineering, 78(4), 1326-1332.
Lin, C. M., Chu, Y. C., Hsiao, C. P., Wu, J. S., Hsieh C. W. & Hou, C. Y. (2019). Optimization of plasma-activated water treatments to inactivate Salmonella Enteritidis (ATCC 13076) on shell eggs, MDPI-Foods, 8, 520-530.
Lin, C. M., Herianto, S., Syu, S. M., Song, C. H., Chen, H. L. & Hou, C. Y. (2021). Applying a large-scale device using non-thermal plasma for microbial decontamination on the shell eggs and its effects on the sensory characteristics, LWT Food Science and Technology, 142, 111067.
Lin, C. M., Hsiao, C. P., Lin, H. S., Liou, J. S., Hsieh, C. W., Wu, C. S. & Hou, C. Y. (2020). The Antibacterial Efficacy and Mechanism of Plasma-Activated Water Against Salmonella Enteritidis (ATCC 13076) on Shell Eggs, MDPI (foods), 9(10), 9101491.
Liu, Y. C., Chen, T. H., Wu, Y. C., Lee, Y. C. & Tan, F. J. (2016). Effects of egg washing and storage temperature on the quality of eggshell cuticle and eggs, Food Chemistry, 211, 687-693.
Liu, Y., Ren, X., Yu, H., Cheng, Y., Guo, Y., Yao, W. & Xie Y. (2020). Non- destructive and online egg freshness assessment from the egg shell based on Raman spectroscopy, Food Control, 118, 107426.
Liu, Y., Wang, S., Shi, L., Lu, W. & Li, P. (2020). Enhanced degradation of atrazine by microbubble ozonation, Environmental Science: Water Research and Technology, 6(6), 1681-1687.
Lv, J. P. & Li, Y. J. (1994). A simple method for determining yolk index and Haugh unit, Meat Hygiene, 7, 13-14.
Ma, J. W., Huang, B. S., Hsu, C. W., Peng, C. W., Cheng, M. L., Kao, J. Y., Way, T. D., Yin, H. C. & Wang, S. S. (2017). Efficacy and Safety Evaluation of a Chlorine Dioxide Solution, MDPI - International Journal of Environmental Research and Public Health, 14(3), 329.
Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O’Brien, S. J., Jones, T. F., Fazil, A. & Hoekstra R. M. (2010). The global burden of nontyphoidal Salmonella gastroenteritis, Clinical Infectious Diseases, 50(6), 882-889.
Manley, T. C. & Niegowski, S. J. (1967). Ozone, In Encyclopedia of chemical technology (2nd edition), Wiley, New York, 14, 410-432.
Mara, L., Hidalgo, A., Comelli, E. M. & Rossi, M. (1996). Evolution of chemical and physical albumen characteristics during the storage of shell eggs, Journal of Agricultural and Food Chemistry, 44(5), 1235-1240.
Masuda, N., Maruyama, A., Eguchi, T., Hirakawa, T. & Murakami, Y. (2015). Influence of Microbubbles on Free Radical Generation by Ultrasound in Aqueous Solution: Dependence of Ultrasound Frequency, Journal of Physical Chemistry B, 119(40), 12887-12893.
Mattioli, S., Ortenzi, R., Scuota, S., Cartoni Mancinelli, A., Dal Bosco, A. & Cotozzolo, E. (2020). Impact of ozone and UV irradiation sanitation treatments on the survival of Salmonella and the physical-chemical characteristics of hen eggs, Journal of Applied Poultry Research, 29(2), 409-419.
Mayes, F. J. & Takeballi, M. A. (1983). Microbial contamination of the hen’s egg: a review, Journal Food Protection, 46(12), 1092-1098.
McDonnell, G. & Russell, A. D. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance, Clinical Microbiology Reviews, 12(1), 147-179.
Meireles, A., Machado, I., Fulgêncio, R., Mergulhão, F., Melo, L. & Simões, M. (2015). Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli, Biochemical Engineering Journal, 104,115-122.
Miller, F. A., Silva, C. L. M. & Brandão, T. R. S. (2013). A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation, Food Engineering Reviews, 5, 77-106.
Miller, G. W., Rice, R. G., Robson, C. M., Scullin, R. L, Kuhn, W. & Wolf, H. (1978). An assessment of ozone and chlorine dioxide technologies for treatment of municipal water supplies, US Environmental Protection Agency, Washington, DC: US Government printing Office, Report No. EPA-600/2-78-147.
Miyamoto, T., Horie, T., Baba, E., Sasai, K., Fukata, T. & Arakawa, A. (1998). Salmonella penetration through the eggshell associated with freshness of laid eggs and refrigeration, Journal of Food Protection, 61(3), 350-353.
Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G. & Castillo, A. (2019). Reduction of Salmonella and Shiga toxin-producing Escherichia coli on alfalfa seeds and sprouts using an ozone generating system, International Journal of Food Microbiology, 289, 57-63.
Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G., Juneja, V. & Castillo, A. (2020). Inactivation of Salmonella and Shiga toxin-producing Escherichia coli (STEC) from the surface of alfalfa seeds and sprouts by combined antimicrobial treatments using ozone and electrolyzed water, Food Research International, 136, 109488.
Muñoz, A., Dominguez- Gasca, N., Jimenez-Lopez, C. & Rodriguez-Navarro, A. B. (2015). Importance of eggshell cuticle composition and maturity for avoiding trans-shell Salmonella contamination in chicken eggs, Food Control, 55, 31-38.
Nguyen, L. P. L., Zsom, T., Dam, M. S., Baranyai, L. & Hitka, G. (2019). Evaluation of the 1-MCP microbubbles treatment for shelf-life extension for melons, Postharvest Biology and Technology, 150, 89-94.
Niveditha, A., Pandiselvam, R., Prasath, V. A., Singh, S. K., Gul, K. & Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review, Food Control, 130, 108338.
Nordstrom, J. O. & Ousterhout, L. E. (1982). Estimation of Shell Weight and Shell Thickness from Egg Specific Gravity and Egg Weight, Poultry Science, 61(10), 1991-1995.
Northcutt, J. K., Musgrove, M. T. & Jones, D. R. (2005). Chemical analyses of commercial shell egg wash water. Journal of Applied Poultry Research, 14(2), 289-225.
Nys, Y., Bain, M., Van Immerseel, F. (2011). Improving the safety and quality of eggs and egg products, In Egg Chemistry, Production and Consumption, Woodhead Publishing, Cambridge, UK.
Obanu, Z. A. & Mpieri, A. A. (1984). Efficiency of dietary vegetable oils in preserving the quality of shell eggs under ambient tropical conditions. Journal of the Science of Food and Agriculture, 35(12),1311-1317.
Offengenden, M. (2011). N-glycosylation and gelling properties of ovomucin from egg white, Master Thesis, University of Alberta, Canada.
Oliveira, C. & Rubio, J. (2011). Zeta potential of single and polymer-coated microbubbles using an adapted microelectrophoresis technique, International Journal of Mineral Processing, 98(1-2), 118-123.
Padron, M. (1990). Salmonella Typhimurium penetration through the eggshell of hatching eggs, Avian Diseases, 34, 463-465.
Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V. & Shahir, S. (2019). Ozone based food preservation: A promising green technology for enhanced food safety, Ozone: Science & Engineering, 41(1), 17-34.
Pandiselvam, R., Subhashini, S., Priya E. P. B., Kothakota, A., Ramesh, S. V. & Shahir, S. (2019). Ozone based food preservation: A promising green technology for enhanced food safety, Ozone: Science and Engineering, 41, 17-34.
Park, S. H. & Kang, D. H. (2018). Effect of temperature on chlorine dioxide inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on spinach, tomatoes, stainless steel, and glass surfaces, International Journal of Food Microbiology, 275, 39-45.
Park, Y. S., Yoo, I. J., Jeon, K. H., Kim, H. K., Chang, E. J. & Oh, H. I. (2003). Effects of various eggshell treatments on the egg quality during storage, Asian-Australasian Journal of Animal Sciences, 16(8), 1224-1229.
Parmar, R. & Majumder, S.K. (2013). Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report, Chemical Engineering and Processing: Process Intensification, 64, 79-97.
Patterson, P. H., Venkitanarayanan, K. & Kariyawasam, S. (2014). Introduction: Reducing Salmonella Enteritidis contamination of shell eggs, Journal of Applied Poultry Research, 23(2), 323-329.
Peleg, M. (1976). Review paper: The chemistry of ozone in the treatment of water, Water Research, 10(5), 361-365.
Phaephiphat, A. & Mahakarnchanakul, W. (2018). Surface Decontamination of Salmonella Typhimurium and Escherichia coli on Sweet Basil by Ozone Microbubbles, Cogent Food Agriculture, 4(1), 1558496.
Popa, I., Hanson, E. J., Todd, E. C. D., Schilder, A. C. & Ryser, E. T. (2007). Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries, Journal of Food Protection, 70(9), 2084-2088.
Qadafi, M., Notodarmojo, S. & Zevi, Y. (2020). Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes, Science of The Total Environment, 747, 141540.
Raspoet, R., Gantois, I., Devloo, R., Pasmans, F., Haesebrouck, F., Ducatelle, R. & Van Immerseel, F. (2011). Internal contamination of eggs by Salmonella Enteritidis, Improving the Safety and Quality of Eggs and Egg Products, 46-61.
Réhault-Godbert, S., Guyot, N., Nys, Y. (2019). The golden egg: nutritional value, bioactivities, and emerging benefits for human health, Nutrients, 11, 684.
Rice, R. G., Robson, C. M., Miller, G. W. & Hill, A. G. (1981). Uses of ozone in drinking water treatment, Journal of the American Water Works Association, 73(1), 44-57.
Richardson, S.D. & Thruston, A.D. (1998). Chemical by-products of chlorine and alternative disinfectants, Food Technology, 52, 58-61.
Rocculi, P., Tylewicz, U., Pękosławska, A., Romani, S., Sirri, F., Siracusa, V. & Rosa M. D. (2009). MAP storage of shell hen eggs, Part 1: Effect on physico-chemical characteristics of the fresh product, LWT – Food Science and Technology, 42(3), 758-762.
Rodriguez-Romo, L. A. & Yousef, A. E. (2005). Inactivation of Salmonella enterica Serovar Enteritidis on Shell Eggs by Ozone and UV Radiation, Journal of Food Protection, 68(4), 711-717.
Ryu, K. N., No, H. K. & Prinyawiwatkul, W. (2011). Internal quality and shelf life of eggs coated with oils from different sources, Journal of Food Science, 76(5), S325-329.
Sakamatapan, K., Mesgarpour, M., Mahian, O., Ahn, H. S. & Wongwises, S. (2021). Experimental investigation of the microbubble generation using a venturi-type bubble generator, Case Studies in Thermal Engineering, 27, 101238.
Sanz, S., Giménez, M., Olarte, C., Lomas, C. & Portu, J. (2002). Effectiveness of chlorine washing disinfection and effects on the appearance of artichoke and borage, Journal of Applied Microbiology, 93(6), 986-993.
Sauter, E. A. & Petersen, C. F. (1969). The effect of eggshell quality on penetration by Pseudomonas fluorescens, Poultry Science, 48(5), 1525-1528.
Sauter, E. A. & Petersen, C. F. (1974). The effect of egg shell quality on penetration by various Salmonella, Poultry Science, 53(6), 2159-2162.
Shangguan, Y., Yu, S., Gong, C., Wang, Y., Yang, W. & Hou, L. A. (2018). A Review of Microbubble and its Applications in Ozonation, IOP Conference Series: Earth and Environmental Science, 128(1), 012149.
Sharma, P. K., Gibcus, M. J., Mei, H. C. & Busscher, H. J. (2005). Influence of fluid shear and microbubbles on bacterial detachment from a surface, Applied and Environmental Microbiology, 71(7), 3668-3673.
Sheng, X. W., Shu, D. Q., Li, Y. J., Zhan, Z. W., Yuan, X. Y., Liu, S. F., Wu, H. X., Bing, S. & Zang, Y. T. (2020). Combined approach consisting of slightly acidic electrolyzed water and chitosan coating to improve the internal quality of eggs during storage, Journal of the Science of Food and Agriculture, 101(6), 2355-2361.
Shynkaryk, M. V., Pyatkovskyy, T. I., Yousef, A. E. & Sastry, S. K. (2016). Gaseous ozone treatment of baby spinach within the existing production chain for inactivation of Escherichia coli O157:H7, Journal of Food Engineering, 191, 10-18.
Singh, A., Sekhon, A. S., Unger, P., BaBB, M., Yang, Y. & Michael, M. (2021). Impact of gas micro-nano-bubbles on the efficacy of commonly used antimicrobials in the food industry, Journal of Applied Microbiology, 130(4), 1092-1105.
Sparks, N. H. C. & Board, R. G. (1985). Microbial penetration of recently developed oviposited shell of hen’s eggs, Austrauan Veterinary Journal, 62(5), 169-170.
St Louis, M. E., Morse, D. L., Potter, M. E., DeMelfi, T. M., Guzewich, J. J., Tauxe, R. V. & Blake, P. A. (1998). The emergence of grade A eggs as a major source of Salmonella Enteritidis infections. New implications for the control of salmonellosis, JAMA, 259, 2103-2107.
Stadelman, W. J. & Cotterill, O. J. (1995). Quality Identification of Shell Eggs, In: Egg science and technology (Fourth Edition), The Haworth Press, New York, 39-66.
Sugino, H., Nitoda, T., Juneja, L. R. (1997). General chemical composition of hen eggs, In: Yammamoti, T., Juneja, L. R., Hatta, H., Kim, M. (eds), Hen Eggs: theirbasic and applied science, CRC Press, Boca Raton, 13-24.
Sunwoo, H. H., Gujral N. (2015). Chemical Composition of Egg and Egg Products, In: Cheung, P. C. K., Mehta, B. M. (eds), Handbook of Food Chemistry, Springer-Verlag Berlin Heidelberg, 331-363.
Suwartha, N., Syamzida, D., Priadi, C. R., Moersidik, S. S. & Ali, F. (2020). Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes, Heliyon, 6(4), e03748.
Swanson, S. & Fu, T. J. (2017). Effect of water hardness on efficacy of sodium hypochlorite inactivation of Escherichia coli O157:H7 in water, Journal of Food Protection, 80(3), 497-501.
Takahashi, M. (2005). Zeta potential of microbubbles in aqueous solutions. Electrical Properties of the gas-water interface, The Journal of Physical Chemistry B, 109(46), 21858-21864.
Takahashi, M., Chiba, K. & Li, P. (2007). Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions, Journal of Physical Chemistry B, 111(39), 11443-11446.
Tasaki, T., Wada, T., Fujimoto, K., Kai, S., Ohe, K., Oshima, T., Baba, Y. & Kukizaki, M. (2009). Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles, Journal of Hazardous Materials, 162(2-3), 1103-1110.
Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S. & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chemical Engineering Science, 66(14), 3172-3179.
TFDA. (2019). Foodborne outbreaks – occurrence, control and prevention: annual report of Taiwan Food and Drug Administration. https://www.fda.gov.tw/TC/siteContent.aspx?sid=323
Tomás-Callejas, A., López-Gálvez, F., Sbodio, A., Artés, F., Artés-Hernández, F. & Suslow, T. V. (2012). Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard, Food Control, 23(2), 325-332.
Torrico, D. D., No, H. K., Prinyawiwatkul, W. & Janes, M. (2011), Mineral oil-chitosan emulsion coatings affect quality and shelf-life of coated eggs during refrigerated and room temperature storage, Journal of Food Science, 76(4), 262-268.
Trepka, M. J., Archer, J. R., Alterkruse, S. F., Proctor, M. E. & Davis J. P. (1999). An increase in sporadic and outbreak-associated Salmonella Enteritidis infections in Wisconsin: The role of eggs, Journal of Infectious Diseases, 180, 1214-1219.
Trinetta, V., Morgan, M. & Linton, R. (2012). Chlorine dioxide for microbial decontamination of food, In: Microbial Decontamination in the Food Industry, Demirci, A. & Ngadi, M. O. (Ed.), Woodhead Publishing, Cambridge, UK, (18), 533-562.
Tsuge, H. (2010). Fundamentals of microbubbles and nanobubbles, Bulletin of the Society of Sea Water Science Japan, 64(1), 4-10.
Tsuge, H. (2014). Characteristics of microbubbles, Micro- and nanobubbles fundamentals and applications, 2, 978-981.
United Egg Producers. (2020). Facts and stats, Accessed 18nd April 2022. https://unitedegg.com/facts-stats/
Ushida, A., Koyama, T., Nakamoto, Y., Narumi, T., Sato, T. & Hasegawa, T. (2017). Antimicrobial effectiveness of ultra-fine ozone-rich bubble mixtures for fresh vegetables using an alternating flow, Journal of Food Engineering, 206, 48-56.
Vadehra, D. V., Baker, R. C. & Naylor, H. B. (1970). Infection Routes of Bacteria into Chicken Eggs, Journal of Food Science, 35(1), 61-62.
Vurma, M., Pandit, R. B., Sastry, S. K. & Yousef, A. E. (2009). Inactivation of Escherichia coli O157:H7 and natural microbiota on spinach leaves using gaseous ozone during vacuum cooling and simulated transportation, Journal of Food Protection, 72(7), 1538-1546.
Wan, Z., Chen, Y., Pankaj, S. & Keener, K. M. (2017). High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell, LWT-Food Science and Technology, 76, 124-130.
Wang, W., Fan, W., Huo, M., Zhao, H. & Lu, Y. (2018). Hydroxyl radical generation and contaminant removal from water by the collapse of microbubbles under different hydrochemical conditions, Water, Air, & Soil Pollution, 229, 86.
Watson, I., Kamble, P., Shanks, C., Khan, Z. & Darra, N. E. (2020). Decontamination of chilli flakes in a fluidized bed using combined technologies: Infrared, UV and ozone, Innovative Food Science & Emerging Technologies, 59, 102248.
Weavers, L. K. & Wickramanayake, G. B. (2001). Disinfection and sterilization using ozone, In: Disinfection, sterilization and preservation (Fifth Edition), Block, S. S. (Ed.), Lippincott Williams and Wilkins, Pennsylvania, USA, 10, 205-214.
Xu, R., Wang, Y. & Li, Z. (2019). Exploration of particle technology in fine bubble characterization, Particuology, 46, 109-115.
Xu, Y. Y., Tian, Y., Ma, R., Liu, Q. H. & Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus, Food Chemistry, 197, 436-444.
Yoon, R.-H. & Yordan, J.L. (1986). Zeta-potential measurements on microbubbles generated using various surfactants, Journal of Colloid And Interface Science, 113(2), 430-438.
Yuan, X. Y., Li, Y. J., Mo, Q. N., Zhang, B. B., Shu, D. Q., Sun, L., Yang, H. K., Xie, X. W., Liu, Y. & Zang Y. T. (2022). A combined approach using slightly acidic electrolyzed water spraying and chitosan and pectin coating on the quality of the egg cuticle, prevention of bacterial invasion, and extension of shelf life of eggs during storage, Food Chemistry, 389, 133129.
Yuk, H. G., Bartz, J. A. & Schneider, K. R. (2006). The effectiveness of sanitizer treatments in inactivation of Salmonella spp. from bell pepper, cucumber, and strawberry, Journal of Food Science, 71(3), 95-99.
Zang, Y. T., Bing, Sh., Li, Y. J., Shu, D. Q., Huang, A. M., Wu, H. X., Lan, L. T. & Wu, H. D. (2019). Efficacy of slightly acidic electrolyzed water on the microbial safety and shelf life of shelled eggs, Poultry Science, 98(11), 5932-5939.
Zhang, H. & Tikekar, R. V. (2021). Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation, Postharvest Biology and Technology, 181, 111687.