|
1.Pathak, J.L., et al., The role of oral microbiome in respiratory health and diseases. Respiratory Medicine, 2021. 185: p. 106475. 2.Berglundh, T., L. Persson, and B. Klinge, A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol, 2002. 29 Suppl 3: p. 197-212; discussion 232-3. 3.Pjetursson, B.E., et al., Improvements in implant dentistry over the last decade: comparison of survival and complication rates in older and newer publications. Int J Oral Maxillofac Implants, 2014. 29 Suppl: p. 308-24. 4.衛生福利部, 人工植牙臨床診治-參考指引. 2006. 5.Sun, Y., et al., Improved wettability of AlSi5 on DP980 steel during laser-induced heating by surface texture preparation. Journal of Manufacturing Processes, 2023. 89: p. 111-123. 6.Biomaterials: Basic principles, in An Introduction to Biomaterials Science and Engineering. 2020, WORLD SCIENTIFIC. p. 82-93. 7.黃世偉, 高分子材料與醫療器材. 科學發展, 2010. 455期. 8.dos Santos, V., R.N. Brandalise, and M. Savaris, Biomaterials: Characteristics and Properties, in Engineering of Biomaterials, V. dos Santos, R.N. Brandalise, and M. Savaris, Editors. 2017, Springer International Publishing: Cham. p. 5-15. 9.Oh, K.T., H.M. Shim, and K.N. Kim, Properties of titanium-silver alloys for dental application. J Biomed Mater Res B Appl Biomater, 2005. 74(1): p. 649-58. 10.Soboyejo, W.O., et al., Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J Biomed Mater Res, 2002. 62(1): p. 56-72. 11.Liu, X., P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004. 47(3): p. 49-121. 12.Han, X., et al., Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids and Surfaces B: Biointerfaces, 2023. 227: p. 113339. 13.Lin, W.T., et al., Mechanical and biological properties of atmospheric plasma-sprayed carbon nanotube-reinforced tantalum pentoxide composite coatings on Ti6Al4V alloy. Surface and Coatings Technology, 2022. 437: p. 128356. 14.Singh, J., S.S. Chatha, and H. Singh, Synthesis and characterization of plasma sprayed functional gradient bioceramic coating for medical implant applications. Ceramics International, 2021. 47(7, Part A): p. 9143-9155. 15.Noori, M., et al., Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications. Ceramics International, 2023. 16.Chen, Y.H., et al., In-vitro and in-vivo bio-corrosion and biocompatibility responses of bioactive TiTaNb films with various Ta contents on Ti6Al4V implants. Journal of Materials Research and Technology, 2023. 17.Huang, H., et al., Biocompatibility of micro/nano structures on the surface of Ti6Al4V and Ti-based bulk metallic glasses induced by femtosecond laser. Biomaterials Advances, 2022. 139: p. 212998. 18.Kashyap, V. and P. Ramkumar, Improved oxygen diffusion and overall surface characteristics using combined laser surface texturing and heat treatment process of Ti6Al4V. Surface and Coatings Technology, 2022. 429: p. 127976. 19.Li, L., J. He, and X. Yang, Preparation of conversion coating on Ti-6Al-4V alloy in mixed solution of phytic acid and ammonium fluoride through chemical modification. Applied Surface Science, 2016. 371: p. 488-493. 20.Alessandra Gobbo, V., et al., Functionalization of a chemically treated Ti6Al4V-ELI alloy with nisin for antibacterial purposes. Applied Surface Science, 2023. 620: p. 156820. 21.Li, X., et al., Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Materials Science and Engineering: C, 2013. 33(5): p. 2987-2994. 22.Strąkowska, P., et al., Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results. Materials Science and Engineering: C, 2016. 59: p. 624-635. 23.Chen, Z., et al., Effect of polarization voltage on the surface componentization and biocompatibility of micro-arc oxidation modified selective laser melted Ti6Al4V. Materials Research Express, 2019. 6(8): p. 086425. 24.Zhang, Z.-Y., et al., Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation. Surface and Coatings Technology, 2023. 467: p. 129724. 25.Sanchette, F., et al., Nanostructured hard coatings deposited by cathodic arc deposition: From concepts to applications. Surface and Coatings Technology, 2011. 205(23): p. 5444-5453. 26.Koskinen, J., 4.02 - Cathodic-Arc and Thermal-Evaporation Deposition, in Comprehensive Materials Processing, S. Hashmi, et al., Editors. 2014, Elsevier: Oxford. p. 3-55. 27.Thanka Rajan, S., B. Subramanian, and A. Arockiarajan, A comprehensive review on biocompatible thin films for biomedical application. Ceramics International, 2022. 48(4): p. 4377-4400. 28.Vershinin, N., et al., Corrosion resistance of the vacuum arc deposited Ti, TiN and TiO2 coatings on large area glass substrates. Surface and Coatings Technology, 2000. 125(1): p. 223-228. 29.Wang, D.-Y., et al., Deposition of diamond-like carbon films containing metal elements on biomedical Ti alloys. Surface and Coatings Technology, 2005. 200(7): p. 2175-2180. 30.Thompson, C.V., Stress Evolution During Volmer-Weber Growth of Thin Films. 31.陳柏諺, 不鏽鋼基材Ti-Al-Si-N薄膜之高溫氧化性能. 明道大學材料科學與工程研究所碩士論文, 2009. 32.Sarakinos, K. and L. Martinu, 8 - Synthesis of thin films and coatings by high power impulse magnetron sputtering, in High Power Impulse Magnetron Sputtering, D. Lundin, T. Minea, and J.T. Gudmundsson, Editors. 2020, Elsevier. p. 333-374. 33.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. p. 666-670. 34.Gall, S.M.a.D., Structure zone model for extreme shadowing conditions. 2013. 527: p. p. 158-163. 35.Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090. 36.Chen, Q. and G.A. Thouas, Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: p. 1-57. 37.Niinomi, M., Recent titanium R&D for biomedical applications in japan. JOM, 1999. 51(6): p. 32-34. 38.Huang, H.-L., et al., Antibacterial activity and cell compatibility of TiZrN, TiZrCN, and TiZr-amorphous carbon coatings. Thin Solid Films, 2015. 596: p. 111-117. 39.Beline, T., et al., β-Ta2O5 thin film for implant surface modification triggers superior anti-corrosion performance and cytocompatibility of titanium. Applied Surface Science, 2020. 520: p. 146326. 40.Lai, B.W., et al., Biocompatibility and Microstructure-Based Stress Analyses of TiNbZrTa Composite Films. Materials (Basel), 2021. 15(1). 41.Huang, H.-L., et al. Fabrication of a Novel Ta(Zn)O Thin Film on Titanium by Magnetron Sputtering and Plasma Electrolytic Oxidation for Cell Biocompatibilities and Antibacterial Applications. Metals, 2020. 10, DOI: 10.3390/met10050649. 42.Chang, Y.Y., et al., Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material. Clin Oral Investig, 2012. 16(1): p. 95-100. 43.Huang, H.-L., et al., Antibacterial TaN-Ag coatings on titanium dental implants. Surface and Coatings Technology, 2010. 205(5): p. 1636-1641. 44.Huang, H.-L., et al., Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content. Journal of Vacuum Science & Technology A, 2014. 32(2): p. 02B117. 45.Huang, H.-L., et al., Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium. Thin Solid Films, 2013. 549: p. 108-116. 46.Voicu, G., et al., Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceramics International, 2020. 46(3): p. 3904-3911. 47.Tsai, M.-T., et al., Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants. Thin Solid Films, 2013. 528: p. 143-150. 48.Chang, Y.Y., J.H. Zhang, and H.L. Huang, Effects of Laser Texture Oxidation and High-Temperature Annealing of TiV Alloy Thin Films on Mechanical and Antibacterial Properties and Cytotoxicity. Materials (Basel), 2018. 11(12). 49.Huang, H.-L., et al., Antibacterial and biological characteristics of tantalum oxide coated titanium pretreated by plasma electrolytic oxidation. Thin Solid Films, 2019. 688: p. 137268. 50.Lai, C.-H., et al., Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants. Thin Solid Films, 2011. 520(5): p. 1525-1531. 51.Tsai, M.-T., et al., Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films. Surface and Coatings Technology, 2016. 303: p. 268-276. 52.Bianchi, M., et al., Surface morphology, tribological properties and in vitro biocompatibility of nanostructured zirconia thin films. Journal of Materials Science: Materials in Medicine, 2016. 27(5): p. 96. 53.Zhang, B., et al., Y-doped TiO2 coating with superior bioactivity and antibacterial property prepared via plasma electrolytic oxidation. Materials & Design, 2020. 192: p. 108758. 54.Zhang, X., et al., Microstructure, corrosion resistance, osteogenic activity and antibacterial capability of Mn-incorporated TiO2 coating. Applied Surface Science, 2020. 531: p. 147399. 55.Chang, Y.-Y., et al., Biological Characteristics of the MG-63 Human Osteosarcoma Cells on Composite Tantalum Carbide/Amorphous Carbon Films. PloS one, 2014. 9: p. e95590. 56.Chang, Y.-Y., et al., Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surface and Coatings Technology, 2014. 259: p. 193-198. 57.Alias, R., et al., Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver–tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Materials Science and Engineering: C, 2020. 107: p. 110304. 58.Chang, C.-H., et al., Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. Surface and Coatings Technology, 2018. 344: p. 312-321. 59.Sakurai, K., et al., Evaluation of sliding properties and durability of DLC coating for medical devices. Diamond and Related Materials, 2019. 96: p. 97-103. 60.Chang, Y.-Y., et al., Characterization and antibacterial performance of ZrNO–Ag coatings. Surface and Coatings Technology, 2013. 231: p. 224-228. 61.Chang, Y.Y., et al., Analyses of antibacterial activity and cell compatibility of titanium coated with a Zr-C-N film. PLoS One, 2013. 8(2): p. e56771. 62.Thomas, G. and R. Isaacs, Basic principles of lasers. Anaesthesia & Intensive Care Medicine, 2011. 12(12): p. 574-577. 63.Schaeffer, R.D., Fundamentals of laser micromachining. 2012, Boca Raton: CRC Press. 64.Wang, Y., et al., Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Optics & Laser Technology, 2021. 139: p. 106987. 65.Jiru, W.G., M.R. Sankar, and U.S. Dixit, Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate. Journal of Materials Engineering and Performance, 2016. 25(3): p. 1172-1181. 66.Jun, Y., et al., Characterization and wear resistance of laser surface cladding AZ91D alloy with Al + Al2O3. Journal of Materials Science, 2007. 42(10): p. 3607-3612. 67.Wang, Y., Y. Li, and Y. Guan, Surface modification and mechanical properties of laser powder bed fusion Inconel 718 after magnetic-assisted laser polishing. Optics & Laser Technology, 2023. 162: p. 109291. 68.Wang, H., et al., Effect of laser shock peening without protective coating on the surface mechanical properties of NiTi alloy. Journal of Alloys and Compounds, 2022. 896: p. 163011. 69.Huerta-Murillo, D., et al., Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications. Optics and Lasers in Engineering, 2017. 98: p. 134-142. 70.Cardoso, J.T., et al., Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy. Optics and Lasers in Engineering, 2018. 111: p. 193-200. 71.Tiainen, L., et al., Novel laser surface texturing for improved primary stability of titanium implants. Journal of the Mechanical Behavior of Biomedical Materials, 2019. 98: p. 26-39. 72.Gnilitskyi, I., et al. Cell and Tissue Response to Modified by Laser-induced Periodic Surface Structures Biocompatible Materials for Dental Implants. in Conference on Lasers and Electro-Optics. 2016. San Jose, California: Optica Publishing Group. 73.Erdoǧan, M., et al., Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Optics Express, 2011. 19(11): p. 10986-10996. 74.Orazi, L., et al., Osteoblast Cell Response to LIPSS-Modified Ti-Implants. Vol. 813. 2019. 75.Man, H.C., N.Q. Zhao, and Z.D. Cui, Surface morphology of a laser surface nitrided and etched Ti??Al??V alloy. Surface and Coatings Technology, 2005. 192(2): p. 341-346. 76.Buser, D., et al., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res, 1991. 25(7): p. 889-902. 77.Brett, P.M., et al., Roughness response genes in osteoblasts. Bone, 2004. 35(1): p. 124-133. 78.Le Gu矇hennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 2007. 23(7): p. 844-854. 79.Eghbali, N., et al., The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser. Dental Materials, 2021. 37(3): p. 547-558. 80.Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203. 81.Waeselmann, N., Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures. 2012. 82.Wang, Y., et al., Real-time synchrotron x-ray studies of low- and high-temperature nitridation of $c$-plane sapphire. Physical Review B, 2006. 74(23): p. 235304. 83.Erbil, H.Y., The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surface Science Reports, 2014. 69(4): p. 325-365. 84.Cui, Z., et al., Surface analysis and electrochemical characterization on micro-patterns of biomedical Nitinol after nanosecond laser irradiating. Surface and Coatings Technology, 2020. 391: p. 125730. 85.Kümmel, D., et al., Surface engineering of a titanium alloy for tribological applications by nanosecond-pulsed laser. Tribology International, 2020. 150: p. 106376. 86.Zhou, J., et al., Experimental study on laser microstructures using long pulse. Optics and Lasers in Engineering, 2016. 78: p. 113-120. 87.Thanka Rajan, S., A. Bendavid, and B. Subramanian, Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Colloids Surf B Biointerfaces, 2019. 173: p. 109-120. 88.Myers, C.E., H.F. Franzen, and J.W. Anderegg, X-ray photoelectron spectra and bonding in transition-metal phosphides. Inorganic Chemistry, 1985. 24(12): p. 1822-1824. 89.Siemensmeyer, B., K. Bade, and J.W. Schultze, XPS and Electrochemical Studies of Thin TiN Layers. Berichte der Bunsengesellschaft für physikalische Chemie, 1991. 95(11): p. 1461-1469. 90.Gonbeau, D., et al., XPS study of thin films of titanium oxysulfides. Surface Science, 1991. 254(1): p. 81-89. 91.Morant, C., et al., An XPS study of the interaction of oxygen with zirconium. Surface Science, 1989. 218(2): p. 331-345. 92.Yoshitaka, N., et al., Initial oxidation of zirconium and Zircaloy-2 with oxygen and water vapor at room temperature. Journal of Nuclear Materials, 1996. 228(3): p. 346-353. 93.DeLouise, L.A., Investigation of the chemical mechanisms of Ta(110) /Ta(110)-suboxide etch selectivity using Cl2 molecular beams. Surface Science, 1995. 324(2): p. 233-248. 94.Rogers, J.D., et al., High resolution study of the M45N67N67 and M45N45N67 Auger transitions in the 5d series. Journal of Physics F: Metal Physics, 1982. 12(9): p. 2097. 95.Werfel, F. and O. Brümmer, Corundum Structure Oxides Studied by XPS. Physica Scripta, 1983. 28(1): p. 92. 96.Murata, M., K. Wakino, and S. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: An example of the effect of polarization on chemical shifts. Journal of Electron Spectroscopy and Related Phenomena, 1975. 6(5): p. 459-464. 97.Saied, S.O., et al., A comparison of ion and fast atom beam reduction in TiO2. Vacuum, 1988. 38(8): p. 917-922. 98.Badrinarayanan, S., et al., Mechanism of high-temperature oxidation of tin selenide. Journal of Materials Science, 1986. 21(9): p. 3333-3338. 99.Prieto, P., L. Galán, and J.M. Sanz, Electronic structure of insulating zirconium nitride. Physical Review B, 1993. 47(3): p. 1613-1615. 100.Sarma, D.D. and C.N.R. Rao, XPES studies of oxides of second- and third-row transition metals including rare earths. Journal of Electron Spectroscopy and Related Phenomena, 1980. 20(1): p. 25-45. 101.Scientific, T.F. Tantalum • Transition Metal. Available from: https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/periodic-table/transition-metal/tantalum.html. 102.Yan, Y.L., M.A. Helfand, and C.R. Clayton, Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS. Applied Surface Science, 1989. 37(4): p. 395-405. 103.Olefjord, I., H.J. Mathieu, and P. Marcus, Intercomparison of surface analysis of thin aluminium oxide films. Surface and Interface Analysis, 1990. 15(11): p. 681-692. 104.Lindsay, J.R., et al., X-ray photoelectron spectra of aluminum oxides: structural effects on the “chemical shift”. Applied Spectroscopy, 1973. 27(1): p. 1-5. 105.Powell, C.J., Recommended Auger parameters for 42 elemental solids. Journal of Electron Spectroscopy and Related Phenomena, 2012. 185(1): p. 1-3. 106.Horvath, B., et al., Preparation, properties, and ESCA characterization of vanadium surface compounds on silicagel 1. Zeitschrift fuer Anorganische und Allgemeine Chemie (1950), 1981: p. 181-192. 107.Bond, G.C. and S. Flamerz, Structure and reactivity of titania-supported oxides: IV. Characterisation of dried vanadia/titania catalyst precursors. Applied Catalysis, 1989. 46(1): p. 89-102. 108.Thomas, J.H. and L.H. Hammer, A Photoelectron Spectroscopy Study of CF 4 / H 2 Reactive Ion Etching Residue on Tantalum Disilicide. Journal of The Electrochemical Society, 1989. 136(7): p. 2004. 109.Pashutski, A., A. Hoffman, and M. Folman, Low temperature XPS and AES studies of O2 adsorption on Al(100). Surface Science, 1989. 208(3): p. L91-L97. 110.McGuire, G., G.K. Schweitzer, and T. Carlson, Core electron binding energies in some Group IIIA, VB, and VIB compounds. Inorganic Chemistry - INORG CHEM, 1973. 12. 111.Ritala, M., et al., Controlled Growth of TaN, Ta3N5, and TaOxNy Thin Films by Atomic Layer Deposition. Chemistry of Materials, 1999. 11(7): p. 1712-1718. 112.Gillet, E. and B. Ealet, Characterization of sapphire surfaces by electron energy-loss spectroscopy. Surface Science, 1992. 273(3): p. 427-436. 113.Wagner, C.D. and J.A. Taylor, Contributions to screening in the solid state by electron systems of remote atoms: Effects to photoelectron and Auger transitions. Journal of Electron Spectroscopy and Related Phenomena, 1982. 28(2): p. 211-217. 114.Jenks, C.J., et al., Photoelectron spectra of an Al 70 Pd 21 Mn 9 quasicrystal and the cubic alloy Al 60 Pd 25 Mn 15. Physical Review B, 1996. 54(9): p. 6301. 115.Nefedov, V., et al., X-ray electron study of oxides of elements. Zhurnal Neorganicheskoi Khimii, 1975. 20(9): p. 2307-2314. 116.Nag, N.K. and F.E. Massoth, ESCA and gravimetric reduction studies on V/Al2O3 and V/SiO2 catalysts. Journal of Catalysis, 1990. 124(1): p. 127-132. 117.Kim, Y.-C., et al., Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films, 1994. 237(1): p. 57-65. 118.Chashechnikova, I.T., et al., Strong metal-carrier interaction in cobalt- and nickel-titanium dioxide co-hydrogenation catalysts. Theoretical and Experimental Chemistry, 1993. 28(3): p. 176-178. 119.Kaufmann, R., et al., XPS studies of the thermal behaviour of passivated Zircaloy-4 surfaces. Surface and Interface Analysis, 1988. 11(10): p. 502-509. 120.Sinha, S., S. Badrinarayanan, and A.P.B. Sinha, An XPS study of hydrogen implanted zirconium. Journal of the Less Common Metals, 1987. 134(2): p. 229-236. 121.Ho, S.F., S. Contarini, and J.W. Rabalais, Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. The Journal of Physical Chemistry, 1987. 91(18): p. 4779-4788. 122.Larsson, R., B. Folkesson, and G. Schon, X-ray photoelectron spectroscopy and homogenous catalysis. I. Vanadium compounds. Chem. Scr, 1973. 3: p. 88-90. 123.Mezentzeff, P., Y. Lifshitz, and J.W. Rabalais, Compositional and chemical modifications of V2O5 and NaVO3 induced by N2+ bombardment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1990. 44(3): p. 296-301. 124.Casamassima, M., et al., XPS CHARACTERIZATION OF SURFACE ELECTRON-DONOR ACCEPTOR PROPERTIES OF ALUMINUM AND SILICON-OXIDES. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1991. 313(1): p. 25-30. 125.Málek, J., L. Beneš, and T. Mitsuhashi, Powder diffraction data and Rietveld refinement of metastable t-ZrO2 at low temperature. Powder Diffraction, 1997. 12(2): p. 96-98. 126.Roth, R.S., J.L. Waring, and H.S. Parker, Effect of oxide additions on the polymorphism of tantalum pentoxide. IV. The system Ta2O5Ta2WO8. Journal of Solid State Chemistry, 1970. 2(3): p. 445-461. 127.Enjalbert, R. and J. Galy, A refinement of the structure of V2O5. Acta Crystallographica Section C, 1986. 42(11): p. 1467-1469. 128.Huang, T., et al., Derivation of d-Values from Digitized X-Ray and Synchrotron Diffraction Data. 1990. p. 295-303. 129.Sato, H., et al., Baddeleyite-type high-pressure phase of TiO2. Science, 1991. 251: p. 786+. 130.蔣巧慧, 雷射表面改質對超合金微結構與超疏水性影響研究, in 機械工程系. 2021, 國立雲林科技大學. 131.Zhao, W., et al., Effects of bioinspired leaf vein structure on biological properties of UV laser patterned titanium alloy. Surfaces and Interfaces, 2023. 38: p. 102785. 132.Lüdecke, C., et al., Physical vapor deposited titanium thin films for biomedical applications: Reproducibility of nanoscale surface roughness and microbial adhesion properties. Applied Surface Science, 2013. 280: p. 578-589. 133.Hu, J., et al., Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Materials Science and Engineering: C, 2020. 115: p. 110921. 134.Yang, Z., X. Liu, and Y. Tian, Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. Journal of Colloid and Interface Science, 2019. 533: p. 268-277. 135.Dongre, G., et al., Preparation of super-hydrophobic textures by using nanosecond pulsed laser. Materials Today: Proceedings, 2021. 42: p. 1145-1151. 136.Zhao, J., et al., A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface. Optics & Laser Technology, 2019. 117: p. 134-141. 137.Sarró, M.I., et al., Influence of gas nitriding of Ti6Al4V alloy at high temperature on the adhesion of Staphylococcus aureus. Surface and Coatings Technology, 2006. 201(6): p. 2807-2812. 138.Ahmed, W., Z. Zhai, and C. Gao, Adaptive antibacterial biomaterial surfaces and their applications. Materials Today Bio, 2019. 2: p. 100017. 139.Lutey, A.H.A., et al., Towards Laser-Textured Antibacterial Surfaces. Scientific Reports, 2018. 8(1): p. 10112. 140.Reifsteck, F., S. Wee, and B.J. Wilkinson, Hydrophobicity–hydrophilicity of staphylococci. Journal of Medical Microbiology, 1987. 24(1): p. 65-73. 141.Cunha, A., et al., Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Applied Surface Science, 2016. 360: p. 485-493. 142.Vasudevan, R., et al., Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids and Surfaces B: Biointerfaces, 2014. 117: p. 225-232. 143.Riaz, M., et al., In Vitro antibacterial activity of Ta2O5 doped glass-ceramics against pathogenic bacteria. Journal of Alloys and Compounds, 2018. 764: p. 10-16. 144.Tang, K., et al., The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioactive Materials, 2023. 27: p. 348-361. 145.Ikeda, H., et al., Difference in penetration of horseradish peroxidase tracer as a foreign substance into the peri-implant or junctional epithelium of rat gingivae. Clinical Oral Implants Research, 2002. 13(3): p. 243-251. 146.Rae, T., The biological response to titanium and titanium-aluminium-vanadium alloy particles: I. Tissue culture studies. Biomaterials, 1986. 7(1): p. 30-36. 147.Okazaki, Y. and E. Gotoh, Metal ion effects on different types of cell line, metal ion incorporation into L929 and MC3T3-E1 cells, and activation of macrophage-like J774.1 cells. Materials Science and Engineering: C, 2013. 33(4): p. 1993-2001. 148.Ghosal, K., et al., Graphene family nanomaterials- opportunities and challenges in tissue engineering applications. FlatChem, 2021. 30: p. 100315. 149.Kumari, R., et al., Laser surface textured titanium alloy (Ti–6Al–4V) – Part II – Studies on bio-compatibility. Applied Surface Science, 2015. 357: p. 750-758. 150.Wang, Y., et al., Study on the effect of surface characteristics of short-pulse laser patterned titanium alloy on cell proliferation and osteogenic differentiation. Materials Science and Engineering: C, 2021. 128: p. 112349. 151.Ponsonnet, L., et al., Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C, 2003. 23(4): p. 551-560. 152.Do, T.A., et al. Risk Factors related to Late Failure of Dental Implant—A Systematic Review of Recent Studies. International Journal of Environmental Research and Public Health, 2020. 17, DOI: 10.3390/ijerph17113931. 153.Termine, J.D., et al., Mineral and collagen-binding proteins of fetal calf bone. Journal of Biological Chemistry, 1981. 256(20): p. 10403-10408. 154.Huang, Q., et al., The effects of Ti and Ta particle surface chemistry on inflammation, osteogenesis and osteoclastogenesis in vitro and in vivo. Colloid and Interface Science Communications, 2023. 54: p. 100716.
|