|
[1] X. Chen, H. Ma, J. Wan, B. Li and T. Xia, "Multi-View 3D Object Detection Network for Autonomous Driving," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6526-6534, 2017. [2] K. J. Zhixin Wang, "Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1742-1749, 2019. [3] Z. Y and T. O, "Voxelnet: End-to-end Learning for Point Cloud Based 3D Object Detection," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490-4499, 2018. [4] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. and Beijbom, "PointPillars: Fast Encoders for Object Detection from Point Clouds," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12689-12697, 2019. [5] Y. Yan, Y. Mao and B. and Li, "SECOND: Sparsely Embedded Convolutional Detection," Sensors, 2018. [6] X. Z. T. H. R. H. Y. Z. X. B. Zhe Liu, "TANet: Robust 3D Object Detection from Point Clouds with Triple Attention," AAAI Conference on Artificial Intelligence, pp. 11677- 11684, 2019. [7] R. R. Weijing Shi, "Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1708-1716, 2020. [8] X. Y. X. T. J. F. Z. X. E. D. S. W. Liang Du, “Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13326-13335, 2020. [9] W. T. S. C. L. J. C.-W. F. Wu Zheng, “CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud,” Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3555-3562, 2020. [10] X. W. H. L. Shaoshuai Shi, “PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-779, 2019. [11] B. Jiang, R. Luo, J. Mao, T. Xiao and Y. and Jiang, "Acquisition of Localization Confidence for Accurate Object Detection," Proceedings of the European Conference (ECCV), pp. 784-799, 2018. [12] Y. S. S. L. X. S. J. J. Zetong Yang, “STD: Sparse-to-Dense 3D Object Detector for Point Cloud,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1951-1960, 2019. [13] C. G. L. J. Z. W. J. S. X. W. H. L. Shaoshuai Shi, "PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10526-10535, 2020. [14] C. He, H. Zeng, J. Huang, X.-S. Hua and L. Zhang, "Structure Aware Single-stage 3D Object Detection from Point Cloud," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11870-11879, 2020. [15] Y. S. S. L. J. J. Zetong Yang, "3DSSD: Point-based 3D Single Stage Object Detector," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11037-11045, 2020. [16] Y. K. J. K. J. W. C. Jin Hyeok Yoo, "3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection," Proc. 16th Eur. Conf. Comput. Vis. (ECCV), p. 720–736, 2020. [17] M. M. J. L. A. H. S. W. Jason Ku, “Joint 3D Proposal Generation and Object Detection from View Aggregation,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1-8, 2018. [18] D. M. H. R. Su Pang, "CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10386-10393, 2020. [19] K. H. R. G. J. S. Shaoqing Ren, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1137-1149, 2017. [20] R. Girshick, "Fast R-CNN," IEEE International Conference on Computer Vision (ICCV), pp. 1440-1448, 2015. [21] G. G. P. D. R. G. Kaiming He, “Mask R-CNN,” IEEE International Conference on Computer Vision (ICCV), pp. 2980-2988, 2018. [22] H. S. K. M. L. J. G. Charles R. Qi, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,” Proc. IEEE Comput.Vis. Pattern Recognit. (CVPR), pp. 77-85, 2017. [23] W. L. C. W. H. S. L. J. G. Charles R. Qi, “Frustum PointNets for 3D Object Detection from RGB-D Data,” Proceedings of the IEEE Conferenceon on Computer Vision and Pattern Recognition (CVPR), pp. 918-927, 2018. [24] P. L. C. S. a. R. U. Andreas Geiger, “Vision meets robotics: The KITTI dataset,” International Journal of Robotics Research (IJJR), pp. 1231-1237, 2013. [25] Z. W. J. S. X. W. H. L. Shaoshuai Shi, “From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 2647-2664, 2021.
|