[1]Pavani, P. N. L., Prasad, C. L. V. R. S. V., Ramji, K., & Ramana, S. V. (2014). Design and Fabrication of Micro Grooves on the Rake Face of Tungsten Carbide Cutting Tools with an Array of Nanofilms. Procedia Materials Science, 5, 2039-2045.
[2]Handschuh‐Wang, S., Wang, T., & Tang, Y. (2021). Ultrathin diamond nanofilms—development, challenges, and applications. Small, 17(30), 2007529.
[3]Ding, X., Zhang, Y., Ling, J., & Lin, C. (2018). Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature. Colloids and Surfaces B: Biointerfaces, 171, 101-109.
[4]Zhao, T., Li, Y., Liu, Y., & Zhao, X. (2012). Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. journal of the mechanical behavior of biomedical materials, 13, 174-184.
[5]Aydın, Z. Y., Malekghasemi, S., & Abaci, S. (2019). Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates. Applied Surface Science, 470, 658-667.
[6]Belmabrouk, H., Rezgui, H., Nasri, F., Aissa, M. F. B., & Guizani, A. A. (2020). Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime. The European Physical Journal Plus, 135(1), 1-17.
[7]Ma, F., Li, J., Zeng, Z., & Gao, Y. (2018). Structural, mechanical and tribocorrosion behavior in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates. Applied Surface Science, 428, 404-414.
[8]Chen, J., Mathaudhu, S. N., Thadhani, N., & Dongare, A. M. (2020). Unraveling the role of interfaces on the spall failure of Cu/Ta multilayered systems. Scientific Reports, 10(1), 1-15.
[9]Rashid, S., Sebastiani, M., Mughal, M. Z., Daniel, R., & Bemporad, E. (2021). Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films. Nanomaterials, 11(2), 435.
[10]Li, W., Liu, P., Xue, Z., Ma, F., Zhang, K., Chen, X., Feng, R., & Liaw, P. K. (2017). Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films. Scientific Reports, 7(1), 1-10.
[11]Niu, T., Zhang, Y., Cho, J., Li, J., Wang, H., & Zhang, X. (2021). Thermal stability of immiscible Cu-Ag/Fe triphase multilayers with triple junctions. Acta Materialia, 208, 116679.
[12]Gola, A., Gumbsch, P., & Pastewka, L. (2018). Atomic-scale simulation of structure and mechanical properties of Cu1− xAgx| Ni multilayer systems. Acta Materialia, 150, 236-247.
[13]Wang, S., Liu, H., Xu, L., Du, X., Zhao, D., Zhu, B., Yu, M., & Zhao, H. (2017). Investigations of Phase Transformation in Monocrystalline Silicon at Low Temperatures via Nanoindentation. Scientific Reports, 7(1), 8682.
[14]Tiennot, M., Paardekam, E., Iannuzzi, D., & Hermens, E. (2020). Mapping the mechanical properties of paintings via nanoindentation: a new approach for cultural heritage studies. Scientific Reports, 10(1), 1-8.
[15]Javaid, F., Pouriayevali, H., & Durst, K. (2021). Dislocation–grain boundary interactions: Recent advances on the underlying mechanisms studied via nanoindentation testing. Journal of Materials Research, 36(12), 2545-2557.
[16]Graham, S. P., Rouainia, M., Aplin, A. C., Cubillas, P., Fender, T. D., & Armitage, P. J. (2021). Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation. Rock mechanics and rock engineering, 54(1), 303-320.
[17]陳佳淵,“分子動力學模擬銅/鋯多層膜之介面與機械性質,” 國立高雄科技大學碩士論文,2018[18]Kawecki, A., Knych, T., Sieja-Smaga, E., Mamala, A., Kwaśniewski, P., Kiesiewicz, G., ... & Pacewicz, A. (2012). Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires. Archives of Metallurgy and Materials, 57, 1261-1270.
[19]Shi, J., Wang, J., Yi, X., Lu, Y., Hua, D., Zhou, Q., & Fan, X. (2022). Nanoscratching-induced plastic deformation mechanism and tribology behavior of Cu/Ta bilayer and multilayer by a molecular dynamics study. Applied Surface Science, 586, 152775.
[20]Marimuthu, K. P., Han, G., & Lee, H. (2022). Effect of modulation ratio on the mechanical behavior of multilayer-thin-film metallic glasses. Journal of Materials Research and Technology, 16, 216-228.
[21]Yan, F., Yang, H., Ying, L., & Wang, T. (2018). Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. Journal of Materials Chemistry C, 6(29), 7905-7912.
[22]Shiran, M. K. G., Khalaj, G., Pouraliakbar, H., Jandaghi, M. R., Dehnavi, A. S., & Bakhtiari, H. (2018). Multilayer Cu/Al/Cu explosive welded joints: Characterizing heat treatment effect on the interface microstructure and mechanical properties. Journal of Manufacturing Processes, 35, 657-663.
[23]Li, J., Lu, W., Gibson, J., Zhang, S., Korte-Kerzel, S., & Raabe, D. (2020). Compatible deformation and extra strengthening by heterogeneous nanolayer composites. Scripta Materialia, 179, 30-35.
[24]Li, H., Xing, Z. C., Li, B. J., Liu, X. S., Lehmert, B., Matthias, M., Li, Z. S., & Tillmann, W. (2022). Microstructural evolution of Cu/W nano-multilayers filler metal during thermal treatment. Vacuum, 200, 111007.
[25]Maurya, S. K., Nie, J. F., & Alankar, A. (2021). Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al-Ti multilayers. Computational Materials Science, 192, 110329.
[26]Sung, P. H., & Chen, T. C. (2020). Performance of Cu–Ag Thin Films as Diffusion Barrier Layer. Coatings, 10(11), 1087.
[27]Vu, T. N., Pham, V. T., Nguyen, V. T., & Fang, T. H. (2022). Interfacial strength and deformation mechanism of Ni/Co multilayers under uniaxial tension using molecular dynamics simulation. Materials Today Communications, 30, 103088.
[28]Sun, Y., Chen, Y., Tsuji, N., & Guan, S. (2020). Microstructural evolution and mechanical properties of nanostructured Cu/Ni multilayer fabricated by accumulative roll bonding. Journal of Alloys and Compounds, 819, 152956.
[29]Zhang, L. F., Gao, R., Hou, J., Zeng, L. F., Xin, J. J., Wu, X. B., ... & Liu, C. S. (2022). The effects of interfaces stability on mechanical properties, thermal conductivity and helium irradiation of V/Cu nano-multilayer composite. Materials & Design, 216, 110535.
[30]Ding, C., Xu, J., Shan, D., Guo, B., & Langdon, T. G. (2021). Sustainable fabrication of Cu/Nb composites with continuous laminated structure to achieve ultrahigh strength and excellent electrical conductivity. Composites Part B: Engineering, 211, 108662.
[31]Tran, A. S. (2020). Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study. Engineering Fracture Mechanics, 239, 107292.
[32]Sahu, B. P., Dutta, A., & Mitra, R. (2019). Influence of composition on Nanoindentation response of Ni-Zr alloy thin films. Metallurgical and Materials Transactions A, 50(12), 5656-5669.
[33]Sahu, B. P., Higgins, W. H., Derby, B. K., Pharr, G. M., & Misra, A. (2022). Strain-rate dependent deformation mechanisms in single-layered Cu, Mo, and multilayer Cu/Mo thin films. Materials Science and Engineering: A, 838, 142776.
[34]Pham, V. T., & Fang, T. H. (2020). Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics. Vacuum, 173, 109184.
[35]Wang, Y., Minhaj, M., Wang, X., & Shi, J. (2022). Deformation behaviors and inverse Hall-Petch effect in nanoindentation of silicon: An atomistic simulation study with experimental validation. Journal of Manufacturing Processes, 74, 319-331.
[36]Reddy, K. V., & Pal, S. (2018). Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Molecular Simulation, 44(17), 1393-1401.
[37]Morozov, I. A. (2021). Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer. Microscopy Research and Technique, 84(9), 1959-1966.
[38]Hassaan, M., Junaid, M., Shahbaz, T., Ilyas, M., Khan, F. N., & Haider, J. (2021). Nanomechanical response of pulsed tungsten inert gas welded titanium alloy by nanoindentation and atomic force microscopy. Journal of Materials Engineering and Performance, 30(2), 1490-1503.
[39]Qi, Y., He, T., Xu, H., Hu, Y., Wang, M., & Feng, M. (2021). Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation. Journal of Alloys and Compounds, 871, 159516.
[40]Wang, Y., Li, X., Wu, Y., Mu, D., & Huang, H. (2021). The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching. International Journal of Mechanical Sciences, 204, 106562.
[41]Suh, A., & Yoon, D. K. (2018). Nanoscratching technique for highly oriented liquid crystal materials. Scientific Reports, 8(1), 1-8.
[42]Zhou, H., Chang, L., Fu, K., Huang, H., Niu, R., Liao, X., Sheppard, L., George, L., & Martinu, L. (2020). Improvement of flow strength and scratch resistance of Ti/Cu nanocrystalline metal multilayer thin films by tailoring layer thickness and modulation ratio. Surface and Coatings Technology, 404, 126461.
[43]Fan, P., Fan, D., Goel, S., & Luo, X. (2021). Molecular dynamics simulation of AFM tip-based nanoscratching of multi-layer graphene. Proceedings of the 21st International conference of the European Society for Precision Engineering and Nanotechnology. euspen, DNK, pp. 143-144.
[44]AlMotasem, A. T., Bergström, J., Gåård, A., Krakhmalev, P., & Holleboom, L. J. (2017). Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation. Wear, 370, 39-45.
[45]Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics, 18(6),817-829.
[46]Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695.
[47]Park, S. J., & Seo, M. K. (2011). Intermolecular force. Interface science and technology, 18, 1-57.
[48]Bader, R. F., & Essén, H. (1984). The characterization of atomic interactions. The Journal of Chemical Physics, 80(5), 1943-1960.
[49]Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermo dynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98.
[50]Dodson, B. W. (1987). Development of a many-body Tersoff-type potential for silicon. Physical Review B, 35(6), 2795.
[51]Stuart, S. J., Tutein, A. B., & Harrison, J. A. (2000). A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112(14), 6472-6486.
[52]Xu, C. H., Wang, C. Z., Chan, C. T., & Ho, K. M. (1992). A transferable tight-binding potential for carbon. Journal of Physics: Condensed Matter, 4(28), 6047.
[53]Daw, M. S., Foiles, S. M., & Baskes, M. I. (1993). The embedded-atom method: a review of theory and applications. Materials Science Reports, 9(7-8), 251-310.
[54]Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46(5), 2727.
[55]陸裕昇, “分子動力學模擬鎳鈷鉻中熵合金之機械與加工特性,” 國立高雄科技大學碩士論文,2021[56]吳忠縉, “金屬奈米線接合之界面與機械效應,” 國立高雄應用科技大學碩士論文,2014[57]Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52(12), 7182-7190.
[58]Tsai, D. H. (1979). The virial theorem and stress calculation in molecular dynamics. The Journal of Chemical Physics, 70(3), 1375-1382.
[59]Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625-625.
[60]Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge university press.
[61]Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Prentice-Hall Series in Automatic Computation. Englewood Cliffs, NJ.
[62]Frenkel, D., Smit, B., & Ratner, M. A. (1996). Understanding molecular simulation: from algorithms to applications (Vol. 2). San Diego: Academic press.
[63]Paterlini, M. G., & Ferguson, D. M. (1998). Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chemical Physics, 236(1-3), 243-252.
[64]Birdsall, C. K., & Langdon, A. B. (2018). Plasma physics via computer simulation. CRC press.
[65]Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625-625.
[66]Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98.
[67]林彥宏,“單晶矽之奈米力學特性分析,” 國立成功大學博士論文,2010[68]蘇祉愷,“分子動力學模擬非晶態鎳鋁合金之壓印與切削加工特性,” 國立高雄應用科技大學碩士論文,2016[69]Clausius, R. (1870). XVI. On a mechanical theorem applicable to heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(265), 122-127.
[70]Basinski, Z. S., Duesbery, M. S., & Taylor, R. (1971). Influence of shear stress on screw dislocations in a model sodium lattice. Canadian Journal of Physics, 49(16), 2160-2180.
[71]Wang, D., Lee, J., Holland, K., Bibby, T., Beaudoin, S., & Cale, T. (1997). Von mises stress in chemical‐mechanical polishing processes. Journal of the Electrochemical Society, 144(3), 1121.
[72]Bishop, M., Kalos, M. H., & Frisch, H. L. (1979). Molecular dynamics of polymeric systems. The Journal of Chemical Physics, 70(3), 1299-1304.
[73]Chang, W. J. (2003). Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectronic Engineering, 65(1-2), 239-246.
[74]Doan, D. Q., Fang, T. H., Tran, A. S., & Chen, T. H. (2019). Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Computational Materials Science, 170, 109162.
[75]Taherkhani, F., & Kiani, S. (2017). Electrical conductivity of methylimidazolium hexafluorophosphate ionic liquid in the presence of colloidal silver nanoparticles with different sizes and temperatures. The Journal of Physical Chemistry C, 121(44), 24434-24443.
[76]Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3-20.
[77]Tran, A. S., & Fang, T. H. (2021). The influence of intrinsic size in amorphous CuxTa100-x/Cu crystalline nanolaminates using molecular dynamics simulation. Physica E: Low-dimensional Systems and Nanostructures, 126, 114470.
[78]Wu, C. D., Fang, T. H., Chen, C. Y., & Weng, C. I. (2014). Effect of nanograin size on nano formed NiTi alloys. Applied Surface Science, 292, 500-505.
[79]Jian, W. R., Wang, L., Yao, X. H., & Luo, S. N. (2018). Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Computational Materials Science, 154, 225-233.
[80]Gao, Y., & Urbassek, H. M. (2016). Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Applied Surface Science, 389, 688-695.
[81]Li, B., Li, J., Zhu, P., Xu, J., Li, R., & Yu, J. (2019). Influence of crystal anisotropy on deformation behaviors in nanoscratching of AlN. Applied Surface Science, 487, 1068-1076.