[1]M. S. Selim et al., "Recent progress in marine foul-release polymeric nanocomposite coatings," vol. 87, pp. 1-32, 2017.
[2]M. E. Callow and J. A. J. B. Callow, "Marine biofouling: a sticky problem," vol. 49, no. 1, pp. 1-5, 2002.
[3]H.-C. J. B. h. Flemming, "Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions," pp. 81-109, 2011.
[4]M. Salta et al., "Designing biomimetic antifouling surfaces," vol. 368, no. 1929, pp. 4729-4754, 2010.
[5]Y. Li et al., "Antifouling behavior of self-renewal acrylate boron polymers with pyridine-diphenylborane side chains," vol. 42, no. 24, pp. 19908-19916, 2018.
[6]S. H. Kwon, I. Lee, H. Park, and S. G. J. P. i. O. C. Lee, "Decomposition mechanisms of self-polishing copolymers for antifouling coating materials through first-principles approach," vol. 138, p. 105406, 2020.
[7]B. Ou et al., "Preparation of novel marine antifouling polyurethane coating materials," vol. 75, pp. 5143-5162, 2018.
[8]S.-M. Kim, A. Y. Kim, I. Lee, H. Park, D.-H. J. J. o. N. Hwang, and Nanotechnology, "Synthesis and characterization of self-polishing copolymers containing a new zinc acrylate monomer," vol. 16, no. 10, pp. 10903-10907, 2016.
[9]M. S. Kamal, S. A. Razzak, and M. M. J. A. E. Hossain, "Catalytic oxidation of volatile organic compounds (VOCs)–A review," vol. 140, pp. 117-134, 2016.
[10]D. Claisse and C. J. M. P. B. Alzieu, "Copper contamination as a result of antifouling paint regulations?," vol. 26, no. 7, pp. 395-397, 1993.
[11]李旻燁, "含矽丙烯酸水性船舶防汙漆和可調節式侵蝕探討," 碩士, 化學工程與材料工程系, 國立高雄科技大學, 高雄市, 2022.[12]M. S. Rahaman, H. Thérien-Aubin, M. Ben-Sasson, C. K. Ober, M. Nielsen, and M. J. J. o. M. C. B. Elimelech, "Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes," vol. 2, no. 12, pp. 1724-1732, 2014.
[13]S. K. J. I. o. i. s. o. c. e. c. i. c. Chakraborty, "Bioinvasion and environmental perturbation: Synergistic impact on coastal–mangrove ecosystems of West Bengal, India," pp. 171-245, 2019.
[14]H. Jin, L. Tian, W. Bing, J. Zhao, and L. J. P. i. M. S. Ren, "Bioinspired marine antifouling coatings: Status, prospects, and future," vol. 124, p. 100889, 2022.
[15]S. Silver, L. T. Phung, G. J. J. o. i. m. Silver, and biotechnology, "Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds," vol. 33, no. 7, pp. 627-634, 2006.
[16]M. Jones and P. J. M. p. b. Ross, "Recovery of the New Zealand muricid dogwhelk Haustrum scobina from TBT-induced imposex," vol. 126, pp. 396-401, 2018.
[17]E. M. J. M. P. McNeil, "Antifouling: Regulation of biocides in the UK before and after Brexit," vol. 92, pp. 58-60, 2018.
[18]I. Amara, W. Miled, R. B. Slama, N. J. E. t. Ladhari, and pharmacology, "Antifouling processes and toxicity effects of antifouling paints on marine environment. A review," vol. 57, pp. 115-130, 2018.
[19]H. G. Silverman and F. F. J. M. b. Roberto, "Understanding marine mussel adhesion," vol. 9, pp. 661-681, 2007.
[20]Y. Li, Y. H. Gao, X. S. Li, J. Y. Yang, G. H. J. C. Que, and S. B. Biointerfaces, "Influence of surface free energy on the adhesion of marine benthic diatom Nitzschia closterium MMDL533," vol. 75, no. 2, pp. 550-556, 2010.
[21]A. J. De Kerchove and M. J. L. Elimelech, "Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films," vol. 24, no. 7, pp. 3392-3399, 2008.
[22]J. M. Bingeman, J. P. Bethell, P. Goodwin, and A. T. J. T. I. J. o. N. A. Mack, "Copper and other sheathing in the Royal Navy," vol. 29, no. 2, pp. 218-229, 2000.
[23]K. A. Dafforn, J. A. Lewis, and E. L. J. M. p. b. Johnston, "Antifouling strategies: history and regulation, ecological impacts and mitigation," vol. 62, no. 3, pp. 453-465, 2011.
[24]E. Almeida, T. C. Diamantino, and O. J. P. i. o. c. de Sousa, "Marine paints: the particular case of antifouling paints," vol. 59, no. 1, pp. 2-20, 2007.
[25]S. Evans, T. Leksono, and P. J. M. P. B. McKinnell, "Tributyltin pollution: a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints," vol. 30, no. 1, pp. 14-21, 1995.
[26]J.-P. Maréchal and C. J. I. J. o. M. S. Hellio, "Challenges for the development of new non-toxic antifouling solutions," vol. 10, no. 11, pp. 4623-4637, 2009.
[27]L. D. Chambers, K. R. Stokes, F. C. Walsh, R. J. J. S. Wood, and C. Technology, "Modern approaches to marine antifouling coatings," vol. 201, no. 6, pp. 3642-3652, 2006.
[28]E. Védie, H. Brisset, J. F. Briand, and C. J. A. M. I. Bressy, "Bioinspiration and microtopography as nontoxic strategies for marine bioadhesion control," vol. 8, no. 20, p. 2100994, 2021.
[29]M. S. Selim, S. A. El-Safty, M. A. Shenashen, S. A. Higazy, and A. J. J. o. m. c. B. Elmarakbi, "Progress in biomimetic leverages for marine antifouling using nanocomposite coatings," vol. 8, no. 17, pp. 3701-3732, 2020.
[30]W. Barthlott and C. J. P. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," vol. 202, pp. 1-8, 1997.
[31]M. Zhang, S. Feng, L. Wang, and Y. J. B. Zheng, "Lotus effect in wetting and self-cleaning," vol. 5, pp. 31-43, 2016.
[32]A. G. Nurioglu and A. C. C. J. J. o. M. C. B. Esteves, "Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications," vol. 3, no. 32, pp. 6547-6570, 2015.
[33]J. Sun et al., "Near-infrared triggered antibacterial nanocomposite membrane containing upconversion nanoparticles," vol. 103, p. 109797, 2019.
[34]J. Zhao, L. Ma, W. Millians, T. Wu, W. J. A. a. m. Ming, and interfaces, "Dual-functional antifogging/antimicrobial polymer coating," vol. 8, no. 13, pp. 8737-8742, 2016.
[35]K. J. E. o. a. b. Takahashi, "Release rate of biocides from antifouling paints," pp. 3-22, 2009.
[36]S. Ling and T. J. J. o. F. M. Ling, "Anomalous drag-reducing phenomenon at a water/fish-mucus or polymer interface," vol. 65, no. 3, pp. 499-512, 1974.
[37]S. Bauer, M. P. Arpa-Sancet, J. A. Finlay, M. E. Callow, J. A. Callow, and A. J. L. Rosenhahn, "Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides," vol. 29, no. 12, pp. 4039-4047, 2013.
[38]K. W. Kolewe, S. R. Peyton, J. D. J. A. a. m. Schiffman, and interfaces, "Fewer bacteria adhere to softer hydrogels," vol. 7, no. 35, pp. 19562-19569, 2015.
[39]Q. Xie, J. Pan, C. Ma, and G. J. S. M. Zhang, "Dynamic surface antifouling: mechanism and systems," vol. 15, no. 6, pp. 1087-1107, 2019.
[40]H. F. Bohn and W. J. P. o. t. N. A. o. S. Federle, "Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface," vol. 101, no. 39, pp. 14138-14143, 2004.
[41]N. MacCallum et al., "Liquid-infused silicone as a biofouling-free medical material," vol. 1, no. 1, pp. 43-51, 2015.
[42]T.-S. Wong et al., "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," vol. 477, no. 7365, pp. 443-447, 2011.
[43]S. Kiil, C. E. Weinell, M. S. Pedersen, K. J. I. Dam-Johansen, and e. c. research, "Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling," vol. 40, no. 18, pp. 3906-3920, 2001.
[44]S. Kiil, K. Dam-Johansen, C. E. Weinell, M. S. Pedersen, and S. A. J. J. o. c. t. Codolar, "Dynamic simulations of a self-polishing antifouling paint exposed to seawater," vol. 74, no. 929, pp. 45-54, 2002.
[45]G. Dai, Q. Xie, C. Ma, G. J. A. a. m. Zhang, and interfaces, "Biodegradable poly (ester-co-acrylate) with antifoulant pendant groups for marine anti-biofouling," vol. 11, no. 12, pp. 11947-11953, 2019.
[46]K. M. Dave, L. Han, M. A. Jackson, L. Kadlecik, C. L. Duvall, and D. J. P. r. S Manickam, "DNA polyplexes of a phosphorylcholine-based zwitterionic polymer for gene delivery," vol. 37, pp. 1-24, 2020.
[47]F. Koschitzki et al., "Amphiphilic dicyclopentenyl/carboxybetaine-containing copolymers for marine fouling-release applications," vol. 12, no. 30, pp. 34148-34160, 2020.
[48]陳意昀, 陳亭綸, 張夢湲, and 薛. J. 化工, "化學接枝低表面能材料於船體水下抗污之應用," vol. 69, no. 5, pp. 52-67, 2022.
[49]A. K. Leonardi, C. K. J. A. r. o. c. Ober, and b. engineering, "Polymer-based marine antifouling and fouling release surfaces: Strategies for synthesis and modification," vol. 10, pp. 241-264, 2019.
[50]H. Kitano et al., "Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility," vol. 21, no. 25, pp. 11932-11940, 2005.
[51]J. A. Finlay et al., "Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces," vol. 24, no. 2, pp. 503-510, 2008.
[52]R. E. J. J. o. M. S. M. i. M. Baier, "Surface behaviour of biomaterials: the theta surface for biocompatibility," vol. 17, no. 11, pp. 1057-1062, 2006.
[53]R. F. Brady Jr and I. L. J. B. Singer, "Mechanical factors favoring release from fouling release coatings," vol. 15, no. 1-3, pp. 73-81, 2000.
[54]M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow, and J. A. J. B. Callow, "The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane)(PDMS) model networks," vol. 21, no. 1, pp. 41-48, 2005.
[55]M. J. A. S. Wiegemann, "Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications," vol. 67, no. 2, pp. 166-176, 2005.
[56]S. Kim, T. Gim, S. M. J. A. a. m. Kang, and interfaces, "Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications," vol. 7, no. 12, pp. 6412-6416, 2015.
[57]J. O. Morley, A. J. O. Kapur, M. H. J. O. Charlton, and B. Chemistry, "Structure–activity relationships in 3-isothiazolones," vol. 3, no. 20, pp. 3713-3719, 2005.
[58]B. I. Escher, R. Baumgartner, M. Koller, K. Treyer, J. Lienert, and C. S. J. W. r. McArdell, "Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater," vol. 45, no. 1, pp. 75-92, 2011.
[59]A. H. Jacobson and G. L. J. S. o. t. T. E. Willingham, "Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants," vol. 258, no. 1-2, pp. 103-110, 2000.
[60]L. Chen and J. C. J. J. o. E. S. Lam, "SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern," vol. 61, pp. 68-79, 2017.
[61]L. Chen, Y. Xu, W. Wang, and P.-Y. J. C. Qian, "Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions," vol. 119, pp. 1075-1083, 2015.
[62]孔祥正, 阚成友, 罗东, and 袁. J. 高等学校化学学报, "有机硅改性丙烯酸酯共聚乳液合成方法及胶膜性能的研究," vol. 16, no. 11, pp. 1810-1813, 1995.
[63]C. Kan, Q. Yuan, M. Wang, and X. J. P. f. A. T. Kong, "Synthesis of silicone–acrylate copolymer latexes and their film properties," vol. 7, no. 2, pp. 95-97, 1996.
[64]杨建军, 吴云庆, 张建安, 吴明元, and 王. J. 涂料工业, "有机硅-丙烯酸酯共聚乳液的研究," vol. 32, no. 6, pp. 6-8, 2002.
[65]郭明, 孙建中, and 周. J. 高校化学工程学报, "聚硅氧烷/聚丙烯酸酯共聚乳液的合成与表征," vol. 16, no. 2, pp. 180-184, 2002.
[66]F. Song et al., "Synergistically improved antifouling efficiency of a bioinspired self-renewing interface via a borneol/boron acrylate polymer," vol. 612, pp. 459-466, 2022.
[67]J. Sha et al., "Eco-friendly self-polishing antifouling coating via eugenol ester hydrolysis," vol. 172, p. 107077, 2022.
[68]C. Bressy et al., "What governs marine fouling assemblages on chemically-active antifouling coatings?," vol. 164, p. 106701, 2022.
[69]王品翔, "以反應型乳化劑製備有機矽/丙烯酸酯乳液之研究," 碩士, 化學工程與材料工程系博碩士班, 國立高雄應用科技大學, 高雄市, 2016.[70]M. S. Selim, H. Yang, F. Q. Wang, N. A. Fatthallah, Y. Huang, and S. J. A. S. S. Kuga, "Silicone/ZnO nanorod composite coating as a marine antifouling surface," vol. 466, pp. 40-50, 2019.