|
1.Ahmadzadeh, A., & Angryk, R. A. (2022). Measuring Class-Imbalance Sensitivity of Deterministic Performance Evaluation Metrics. 2022 IEEE International Conference on Image Processing (ICIP) (pp. 51–55). 2.Ahmed, A. N., & Saini, R. (2023). Detection of Credit Card Fraudulent Transactions Utilizing Machine Learning Algorithms. 2023 2nd International Conference for Innovation in Technology (INOCON) (pp. 1–5). 3.Alghamdi, T. A., & Javaid, N. (2022). A Survey of Preprocessing Methods Used for Analysis of Big Data Originated From Smart Grids. IEEE Access, 10, 29149–29171. 4.Azuaje, F., Witten, I., & E, F. (2006). Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. Biomedical Engineering Online—BIOMED ENG ONLINE, 5, 1–2. 5.Bellinger, C., Sharma, S., & Japkowicz, N. (2012). One-Class versus Binary Classification: Which and When? 2012 11th International Conference on Machine Learning and Applications (Vol. 2, pp. 102–106). 6.Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. 7.Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 8.Cao, L., & Zhai, Y. (2015). Imbalanced Data Classification Based on a Hybrid Resampling SVM Method. 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom) (pp. 1533–1536). 9.Chang, Y.-M., Chen, J., & Hsieh, P. (2017). Prediction of Solder Joint Quality Using a Data Mining Methodology for Surface Mounted Technology Process. Proceedings of the 1st International Conference on Big Data Research, ICBDR ’17 (pp. 52–56). 10.Chang, Y.-M., Wei, C.-C., Chen, J., & Hsieh, P. (2018). Classification of Solder Joints via Automatic Mistake Reduction System for Improvement of AOI Inspection. 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (pp. 150–153). 11.Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. 12.Fawcett, T., & Provost, F. (1997). Adaptive Fraud Detection. Data Mining and Knowledge Discovery, 1(3), 291–316. 13.Hand, D., & Christen, P. (2018). A note on using the F-measure for evaluating record linkage algorithms. Statistics and Computing, 28(3), 539–547. 14.Hasan, K. A., & Hasan, Md. A. M. (2020). Prediction of Clinical Risk Factors of Diabetes Using Multiple Machine Learning Techniques Resolving Class Imbalance. 2020 23rd International Conference on Computer and Information Technology (ICCIT) (pp. 1–6). 15.Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics). 16.He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284. 17.Heaton, J. (2018). Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genetic Programming and Evolvable Machines, 19(1), 305–307. 18.Johnson, J. M., & Khoshgoftaar, T. M. (2021). Robust Thresholding Strategies for Highly Imbalanced and Noisy Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1182–1188). 19.Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A., Uddin, S., Luo, S., Yang, X., et al. (2021). A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data. IEEE Access, 9, 109960–109975. 20.Kusdiyanto, A. Y., & Pristyanto, Y. (2022). Machine Learning Models for Classifying Imbalanced Class Datasets Using Ensemble Learning. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 648–653). 21.Lau, F. K. H., & Yeung, V. W. S. (1997). A hierarchical evaluation of the solder paste printing process. Journal of Materials Processing Technology, 69(1), 79–89. 22.Le, T., Vo, M., Vo, B., Lee, M., & Baik, S. (2019). A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction. Complexity, 2019, 1–12. 23.Lemaître, G., Nogueira, F., & Aridas, C. (2016). Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning, 18. 24.Liaw, A., & Wiener, M. (2001). Classification and Regression by RandomForest. Forest, 23. 25.Lin, W.-C., Tsai, C.-F., Hu, Y.-H., & Jhang, J.-S. (2017). Clustering-based undersampling in class-imbalanced data. Information Sciences, 409–410, 17–26. 26.Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 2020 11th International Conference on Information and Communication Systems (ICICS) (pp. 243–248). 27.Mohammed, Z., Asghar, M., & Kanwal, N. (2021). Analyzing the impact of COVID-19 on flight cancellation using machine learning and deep learning algorithms for a highly unbalanced dataset. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1–6). 28.Mohosheu, Md. S., al Noman, MD. A., Newaz, A., Al-Amin, & Jabid, T. (2024). A Comprehensive Evaluation of Sampling Techniques in Addressing Class Imbalance Across Diverse Datasets. 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) (pp. 1008–1013). 29.More, A. S., & Rana, D. P. (2017). Review of random forest classification techniques to resolve data imbalance. 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM) (pp. 72–78). 30.Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. 31.Nhita, F., Adiwijaya, & Kurniawan, I. (2023a). Performance and Statistical Evaluation of Three Sampling Approaches in Handling Binary Imbalanced Data Sets. 2023 International Conference on Data Science and Its Applications (ICoDSA) (pp. 420–425). 32.Nhita, F., Adiwijaya, & Kurniawan, I. (2023b). Improvement of Imbalanced Data Handling: A Hybrid Sampling Approach by using Adaptive Synthetic Sampling and Tomek links. 2023 Eighth International Conference on Informatics and Computing (ICIC) (pp. 1–5). 33.Palli, A. S., Jaafar, J., Hashmani, M. A., Gomes, H. M., & Gilal, A. R. (2022). A Hybrid Sampling Approach for Imbalanced Binary and Multi-Class Data Using Clustering Analysis. IEEE Access, 10, 118639–118653. 34.Permataning Tyas, S. M., Sarno, R., Haryono, A. T., & Rossa Sungkono, K. (2023). A Robustly Optimized BERT using Random Oversampling for Analyzing Imbalanced Stock News Sentiment Data. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE) (pp. 897–902). 35.Pristyanto, Y., & Dahlan, A. (2019). Hybrid Resampling for Imbalanced Class Handling on Web Phishing Classification Dataset. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (pp. 401–406). 36.Rahman, M., Palash, M. I. A., Sumi, M. S., Rahman, M., & Al Nahian, M. J. (2023). Using Ensemble Approaches and Different Sampling Techniques to Handle Class Imbalance Challenges in Coronary Heart Disease Prediction. 2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 31–35). 37.Rau, F. C., Wigger, A., Tellhelm, B., Zwick, M., Klumpp, S., Neumann, A., Oltersdorf, B., et al. (2011). Observer variability and sensitivity of radiographic diagnosis of canine medial coronoid disease. Tierarztliche Praxis. Ausgabe K, Kleintiere/Heimtiere, 39(5), 313–322. 38.Reshadat, V., & Kapteijns, R. A. J. W. (2021). Improving the Performance of Automated Optical Inspection (AOI) Using Machine Learning Classifiers. 2021 International Conference on Data and Software Engineering (ICoDSE) (pp. 1–5). 39.Rottmann, M., Hüger, F., Maag, K., Schlicht, P., Chan, R., & Gottschalk, H. (2019). Detection of False Positive and False Negative Samples in Semantic Segmentation. 40.Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One, 10(3), e0118432. 41.Sammut, C., & Webb, G. (2010). Encyclopedia of Machine Learning. Encyclopedia of Machine Learning: , ISBN 978-0-387-30768-8. Springer Science+Business Media, LLC, 2010. 42.Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2008). Hybrid sampling for imbalanced data. 2008 IEEE International Conference on Information Reuse and Integration (pp. 202–207). 43.Shehada, D., Muammar, S., Amour, M. A., & Bouridane, A. (2023). Investigating The Impact of Sampling Techniques on an Imbalanced Classification Problem. 2023 6th International Conference on Signal Processing and Information Security (ICSPIS) (pp. 39–44). 44.Sridhar, S., & Sanagavarapu, S. (2021). Handling Data Imbalance in Predictive Maintenance for Machines using SMOTE-based Oversampling. 2021 13th International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 44–49). 45.Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378. 46.Ugarković, A., & Oreški, D. (2022). Supervised and Unsupervised Machine Learning Approaches on Class Imbalanced Data. 2022 International Conference on Smart Systems and Technologies (SST) (pp. 159–162). 47.Yadav, S., & Bhole, G. P. (2020). Handling Imbalanced Dataset Classification in Machine Learning. 2020 IEEE Pune Section International Conference (PuneCon) (pp. 38–43). 48.Zhang, L., & Wang, W. (2011). A Re-sampling Method for Class Imbalance Learning with Credit Data. 2011 International Conference of Information Technology, Computer Engineering and Management Sciences (Vol. 1, pp. 393–397).
|