|
[1]O'Shea, K., & Nash, R., “An introduction to convolutional neural networks,” arXiv:1511.08458, 2015. [2]Walker, H. K., Hall, W. D., & Hurst, J. W., “Clinical methods: the history, physical, and laboratory examinations,” 3rd ed. Boston: Butterworths, 1990. [3]Hoffman, R., Benz Jr, E. J., Silberstein, L. E., Heslop, H., Anastasi, J., & Weitz, J., “Hematology: basic principles and practice,” Elsevier Health Sciences, 2013. [4]Koepke, J.A., Bentley, S., Pierre, R.V., Richardson-Jones, A., Ross, D., Saunders, A.M., Simson, E., Assendelft, O.W., & Wilding, P., “Reference Leukocyte Differential Count (Proportional) and Evaluation of Instrumental Methods; Approved Standard,” 1992. [5]Bain, B. J., “Diagnosis from the blood smear,” NEJM, 353(5), 498-507, 2005. [6]Sullivan, B. M., & Locksley, R. M., “Basophils: a nonredundant contributor to host immunity,” j.immuni, 30(1), 12-20, 2009. [7]Arinobu, Y., Iwasaki, H., & Akashi, K., “Origin of basophils and mast cells,” allergol int, 58(1), 21-28, 2009. [8]Fahy, J. V., “Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies,” PATS, 6(3), 256-259, 2009. [9]Gauvreau, G. M., Ellis, A. K., & Denburg, J. A., “Haemopoietic processes in allergic disease: eosinophil/basophil development,” Clin Exp Allergy, 39(9), 1297-1306, 2009. [10]J Corrons, J. L. V., Albarède, S., Flandrin, G., Heller, S., Horvath, K., Houwen, B., et al, “Guidelines for blood smear preparation and staining procedure for setting up an external quality assessment scheme for blood smear interpretation. Part I: control material,” CCLM, 42(8), 922-926, 2004. [11]SHEN, P. F., & PATTERSON, L. T., “A simplified Wright's stain technique for routine avian blood smear staining,” Poult. Sci., 62(5), 923-924, 1983. [12]Giemsa, G., “Färbemethoden für malariaparasiten. Zentralbl Bakteriol,” 31, 429-430, 1902. [13]Das, P. K., & Meher, S., “An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia,” Expert Syst. Appl., 183, 115311, 2021. [14]Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv:1704.04861, 2017. [15]e, K., Zhang, X., Ren, S., & Sun, J., “Deep residual learning for image recognition,” CVPR, pp. 770-778, 2015. [16]Alharbi, A. H., Aravinda, C. V., Lin, M., Venugopala, P. S., Reddicherla, P., & Shah, M. A., “Segmentation and classification of white blood cells using the UNet,” CMMI, 2022, 2022. [17]Kaushik, H., Singh, D., Kaur, M., Alshazly, H., Zaguia, A., & Hamam, H., “Diabetic retinopathy diagnosis from fundus images using stacked generalization of deep models,” IEEE Access, 9, 108276-108292, 2021. [18]Hahn, T. V., & Mechefske, C. K., “Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder,” IJHM, 4(1), 69-98, 2021. [19]Bozorgpour, A., Azad, R., Showkatian, E., & Sulaiman, A., “Multi-scale regional attention deeplab3+: Multiple myeloma plasma cells segmentation in microscopic images,” arXiv:2105.06238, 2021. [20]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., “You only look once: Unified, real-time object detection,” CVPR, pp. 779-788, 2016. [21]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al, “Going Deeper with Convolutions,” CVPR, pp. 1-9, 2015. [22]Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” CVPR, pp. 7464-7475, 2023. [23]Ronneberger, O., Fischer, P., & Brox, T., “U-net: Convolutional networks for biomedical image segmentation,” arXiv:1505.04597, 2015. [24]Valanarasu, J. M. J., & Patel, V. M., “UNeXt: MLP-based Rapid Medical Image Segmentation Network,” arXiv:2203.04967, 2022. [25]Vahadane, A., Peng, T., Sethi, A., Albarqouni, S., Wang, L., Baust, M., et al, “Structure-preserving color normalization and sparse stain separation for histological images,” IEEE, 35(8), 1962-1971, 2016. [26]LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P., “Gradient-based learning applied to document recognition,” IEEE, 86(11), 2278-2324, 1998. [27]Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q., “Densely connected convolutional networks,” CVPR, pp. 4700-4708, 2017. [28]https://www.differencebetween.com/difference-between-giemsa-stain-and-vs-wright-stain [29]https://www.kaggle.com/datasets/bzhbzh35/peripheral-blood-cell [30]https://www.kaggle.com/datasets/livepriyanka09/aml-cytology [31]https://github.com/heartexlabs/labelImg [32]https://github.com/wkentaro/labelme
|