|
1.Yang, B., et al., Thermal and thermo-mechanical properties of Ti–Al–N and Cr–Al–N coatings. Int. J. Refract. Met. Hard Mater, 2012. 35: p. 235-240. 2.Hu, C., et al., Self-layering of (Ti,Al)N by interface-directed spinodal decomposition of (Ti,Al)N/TiN multilayers: First-principles and experimental investigations. Materials & Design, 2022. 224: p. 111392. 3.Vaz, F., et al., Thermal oxidation of Ti1 − xAlxN coatings in air. J. Eur. Ceram. Soc., 1997. 17(15): p. 1971-1977. 4.Zhou, J., et al., Effect of B-doping on the mechanical properties, thermal stability and oxidation resistance of TiAlN coatings. Int. J. Refract. Met. Hard Mater, 2021. 98: p. 105531. 5.Hu, C., L. Chen, and V. Moraes, Structure, mechanical properties, thermal stability and oxidation resistance of arc evaporated CrAlBN coatings. Surf. Coat. Technol., 2021. 417: p. 127191. 6.Chang, Y.-Y., et al., Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surf. Coat. Technol., 2022. 432: p. 128097. 7.Chang, Y.-Y. and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surf. Coat. Technol., 2019. 374: p. 1120-1127. 8.Pshyk, A.V., et al., High temperature behavior of functional TiAlBSiN nanocomposite coatings. Surf. Coat. Technol., 2016. 305: p. 49-61. 9.Kuo, Y.-C., C.-J. Wang, and J.-W. Lee, The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 2017. 638: p. 220-229. 10.Park, I.-W., et al., Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system. Surf. Coat. Technol., 2007. 201(9): p. 5223-5227. 11.Mercs, D., et al., Mechanical and tribological properties of Cr–N and Cr–SI–N coatings reactively sputter deposited. Surf. Coat. Technol., 2005. 200(1): p. 403-407. 12.Vepřek, S. and S. Reiprich, A concept for the design of novel superhard coatings. Thin Solid Films, 1995. 268(1): p. 64-71. 13.Liu, Z.R., et al., Effect of Si-addition on structure and thermal stability of Ti-Al-N coatings. J. Alloys Compd., 2022. 917: p. 165483. 14.Wüstefeld, C., et al., Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1−xAlxN protective coatings grown by cathodic arc evaporation. Surf. Coat. Technol., 2010. 205(5): p. 1345-1349. 15.Esaka, F., et al., Depth profiling of surface oxidized TiAlN film by synchrotron radiation excited X-ray photoelectron spectroscopy. Surf. Sci., 1997. 377-379: p. 197-200. 16.Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surf. Coat. Technol., 2009. 204(6): p. 992-996. 17.Chang, Y.-Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J. Alloys Compd., 2008. 461(1): p. 336-341. 18.Kretschmer, A., et al., Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surf. Coat. Technol., 2021. 416: p. 127162. 19.Xu, Y.X., et al., Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios. Surf. Coat. Technol., 2016. 304: p. 512-518. 20.ISO 26443:2008 ,Fine ceramics (advanced ceramics, advanced technical ceramics) -- Rockwell indentation test for evaluation of adhesion of ceramic coatings. International Organization for Standardization. 2008. 21.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Appl. Surf. Sci., 2015. 324: p. 160-167. 22.Bruslind, L., Microbiology. 23.Neumeier, J., Photophysics of Graphene Quantum Dots. 2015. 24.Wang, Y., et al., Real-time synchrotron x-ray studies of low- and high-temperature nitridation of $c$-plane sapphire. Physical Review B, 2006. 74(23): p. 235304. 25.Ferreira, R., et al., Influence of morphology and microstructure on the tribological behavior of arc deposited CrN coatings for the automotive industry. Surface & coatings technology, 2020. 397: p. 126047. 26.Rother, B. and H. Kappl, Effects of low boron concentrations on the thermal stability of hard coatings. Surf. Coat. Technol., 1997. 96(2): p. 163-168. 27.Mendez, A., et al., Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS. Surf. Coat. Technol., 2021. 422: p. 127513. 28.Veprek, S., et al., Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol., 2000. 133-134: p. 152-159. 29.Tritremmel, C., et al., Microstructure and mechanical properties of nanocrystalline Al–Cr–B–N thin films. Surf. Coat. Technol., 2012. 213: p. 1-7. 30.Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surf. Coat. Technol., 2020. 404: p. 126429. 31.Chen, L., et al., Influence of Zr on structure, mechanical and thermal properties of Cr–Al–N coatings. Surf. Coat. Technol., 2015. 275: p. 289-295. 32.Li, K.Q., et al., Structure, mechanical and thermal properties of CrAlBSiN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol., 2023. 452: p. 129094. 33.Willmann, H., et al., Thermal stability of Al–Cr–N hard coatings. Scr. Mater., 2006. 54(11): p. 1847-1851. 34.Mayrhofer, P.H., H. Willmann, and A.E. Reiter, Structure and phase evolution of Cr–Al–N coatings during annealing. Surf. Coat. Technol., 2008. 202(20): p. 4935-4938. 35.Reiter, A.E., et al., Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol., 2005. 200(7): p. 2114-2122. 36.Endrino, J.L., et al., Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Mater., 2011. 59(16): p. 6287-6296. 37.Mayrhofer, P.H., et al., Energetic balance and kinetics for the decomposition of supersaturated Ti1−xAlxN. Acta Mater., 2007. 55(4): p. 1441-1446. 38.Moser, M., et al., Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Films. Materials, 2010. 3(3): p. 1573-1592. 39.Mayrhofer, P.H., D. Music, and J.M. Schneider, Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1−xAlxN. J. Appl. Phys., 2006. 100(9). 40.Zhou, J., et al., Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c–Ti1−xAlxN coatings. Calphad, 2017. 56: p. 92-101. 41.Feng, Y.-p., et al., Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings. Int. J. Refract. Met. Hard Mater, 2014. 43: p. 241-249. 42.Ichijo, K., H. Hasegawa, and T. Suzuki, Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method. Surf. Coat. Technol., 2007. 201(9): p. 5477-5480. 43.Pei, F., et al., Improved properties of TiAlN coating by combined Si-addition and multilayer architecture. J. Alloys Compd., 2019. 790: p. 909-916. 44.Pang, X., et al., Annealing effects on microstructure and mechanical properties of sputtered multilayer Cr(1−x)AlxN films. Thin Solid Films, 2011. 519(18): p. 5831-5837. 45.Hu, C., et al., Structural, mechanical and thermal properties of CrAlNbN coatings. Surf. Coat. Technol., 2018. 349: p. 894-900. 46.Peng, B., et al., High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed Ti − Al − N coatings deposited by cathodic arc evaporation. Corros. Sci., 2020. 167: p. 108490. 47.Lim, H.P., et al., A systematic investigation of the tribological behaviour of oxides formed on AlSiTiN, CrAlTiN, and CrAlSiTiN coatings. Wear, 2023. 512-513: p. 204552. 48.Hemmati, A., J. Paiva, and S.C. Veldhuis, Thermal stability and machining performance of arc evaporated Ti1-xAlxN hard PVD coatings with x=0.5 – 0.73 ratios using an integrative approach. Materialia, 2021. 17: p. 101132. 49.Ljungcrantz, H., et al., Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO. J. Appl. Phys., 1996. 80(12): p. 6725-6733. 50.Sui, X., et al., Evolution behavior of oxide scales of TiAlCrN coatings at high temperature. Surf. Coat. Technol., 2019. 360: p. 133-139. 51.Chen, L., et al., Thermal stability and oxidation resistance of Ti–Al–N coatings. Surf. Coat. Technol., 2012. 206(11): p. 2954-2960. 52.Yu, D., et al., Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology. Thin Solid Films, 2009. 517(17): p. 4950-4955. 53.Rebholz, C., et al., Hard and superhard TiAlBN coatings deposited by twin electron-beam evaporation. Surf. Coat. Technol., 2007. 201(13): p. 6078-6083. 54.Lin, J., et al., The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings. Surf. Coat. Technol., 2015. 277: p. 58-66. 55.Liew, W.Y.H., et al., Thermal stability, mechanical properties, and tribological performance of TiAlXN coatings: understanding the effects of alloying additions. J. Mater. Res. Technol., 2022. 17: p. 961-1012. 56.Ezura, H., et al., Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method. Vacuum, 2008. 82(5): p. 476-481. 57.Chen, W., et al., Influence of annealing on microstructures and mechanical properties of arc-deposited AlCrTiSiN coating. Surf. Coat. Technol., 2021. 421: p. 127470. 58.Kim Y.-C., P.H.-H., Chun J.S., Lee W.-J., Thin Solid Films 237, 57 (1994). 59.Olefjord I., M.H.J., Marcus P., Surf. Interface Anal. 15, 681 (1990). 60.Ayame A., K.T., Bunseki Kagaku 40, 673 (1991). 61.Chashechnikova I.T., V.V.M., Borovik V.V., Golodets G.I., Plyuto I.V., and Shpak A.P., Theor. Eksp. Khim. 28, 216 (1992). 62.Fierro J.L.G., A.L.A., Nieto J.M.L., Kremenic G., Appl. Catalysis 37, 323 (1988). 63.Blasco T., C.M.A., Corma A., Perez-Pariente J., J. Am. Chem. Soc. 115, 11806 (1993). 64.Halada G.P., C.C.R., J. Electrochem. Soc. 138, 2921, 1991. 65.Allen G.C., H.S.J., Jutson J.A., Dyke J.M., Appl. Surf. Sci. 37, 111 (1989). 66.Paparazzo E., S.E., Jimenez-Lopez A., Maireles-Torres P., Olivera-Pastor P., et al., J. Mater. Chem. 2, 1175 (1992). 67.Klimov V.D., V.A.A., Pronin I.S., Zh. Obshch. Khim. 61, 2166 (1991). 68.Hanawa T., O.M., Biomaterials 12, 767 (1991). 69.Castillo R., K.B., Ruiz P., Delmon B., J. Catal. 161, 524 (1996). 70.Finster J., K.E.-D., Heeg J., Vacuum 41, 1586 (1990). 71.Dupuie J.L., G.E., Terry F., J. Electrochem. Soc. 139, 1151 (1992). 72.Donley M.S., B.D.R., Stoebe T.G., Surf. Interface Anal. 11, 335 (1988). 73.Desimoni E., M.C., Zambonin P.G., Riviere J.C., Surf. Interface Anal. 13, 173 (1988). 74.Dementjev A.P., I.O.P., Vasilyev L.A., Naumkin A.V., Nemirovsky D.M., Shalaev D.Y., J. Vac. Sci. Technol. A 12, 423 (1994). 75.Sanjines R., T.H., Berger H., Gozzo F., Margaritondo G., and Levy F., J. Appl. Phys. 75, 2945 (1994). 76.Danek, M., et al., Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surf. Coat. Technol., 2017. 313: p. 158-167. 77.Hollerweger, R., et al., Guidelines for increasing the oxidation resistance of Ti-Al-N based coatings. Thin Solid Films, 2019. 688: p. 137290. 78.Xu, Y.X., et al., Thermal stability and oxidation resistance of V-alloyed TiAlN coatings. Ceram. Int., 2018. 44(2): p. 1705-1710. 79.Kim, M.J. and D.B. Lee, Oxidation of TiAlCrSiN Thin Films at 1000°C in Air. Applied Mechanics and Materials, 2015. 719-720: p. 127-131. 80.Ru, Q., et al., Properties of TiAlCrN coatings prepared by vacuum cathodic arc ion plating. Rare Met., 2008. 27(3): p. 251-256. 81.Xu, Y.X., et al., Thermal stability and oxidation resistance of sputtered TiAlCrN hard coatings. Surf. Coat. Technol., 2017. 324: p. 48-56. 82.Miyake, T., A. Kishimoto, and H. Hasegawa, Tribological properties and oxidation resistance of (Cr,Al,Y)N and (Cr,Al,Si)N films synthesized by radio-frequency magnetron sputtering method. Surf. Coat. Technol., 2010. 205: p. S290-S294. 83.Fukumoto, N., H. Ezura, and T. Suzuki, Synthesis and oxidation resistance of TiAlSiN and multilayer TiAlSiN/CrAlN coating. Surf. Coat. Technol., 2009. 204(6): p. 902-906. 84.Xu, Y.X., et al., Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating. Surf. Coat. Technol., 2013. 235: p. 506-512.
|