|
Alayed, N., Alkhalifah, B., Alharbi, M., Alwohaibi, N., & Farooqui, M. (2019). Adverse Drug Reaction (ADR) as a Cause of Hospitalization at a Government Hospital in Saudi Arabia: A Prospective Observational Study. Curr Drug Saf, 14(3), 192-198. doi:10.2174/1574886314666190520105330 Aldrich, C. (2020). Process Variable Importance Analysis by Use of Random Forests in a Shapley Regression Framework. Minerals, 10(5). doi:10.3390/min10050420 Badillo, S., Banfai, B., Birzele, F., Davydov, II, Hutchinson, L., Kam-Thong, T., . . . Zhang, J. D. (2020). An Introduction to Machine Learning. Clin Pharmacol Ther, 107(4), 871-885. doi:10.1002/cpt.1796 Bailey, C., Peddie, D., Wickham, M. E., Badke, K., Small, S. S., Doyle-Waters, M. M., . . . Hohl, C. M. (2016). Adverse drug event reporting systems: a systematic review. Br J Clin Pharmacol, 82(1), 17-29. doi:10.1111/bcp.12944 Behera, S. K., Das, S., Xavier, A. S., Velupula, S., & Sandhiya, S. (2018). Comparison of different methods for causality assessment of adverse drug reactions. Int J Clin Pharm, 40(4), 903-910. doi:10.1007/s11096-018-0694-9 C A Naranjo, U. B., E M Sellers, P Sandor, I Ruiz, E A Roberts, E Janecek, C Domecq, D J Greenblatt. (1981). A method for estimating the probability of adverse drug reactions. C. Lee Ventola, M. (2018). Big Data and Pharmacovigilance:Data Mining for Adverse Drug Events and Interactions. P&T®, Vol. 43 No. 6. Center, T. N. A. R. (2020). Taiwan National Adverse Drug Reaction Notification System Setup. Retrieved from https://adr.fda.gov.tw/ Charles H. Chesnut, I., MD, Stuart Silverman, MD, Kim Andriano, PhD, Harry Genant, MD, Alberto Gimona, MD, Steven Harris, MD, Douglas Kiel, MD, Meryl LeBoff, MD, Michael Maricic, MD, Paul Miller, MD, Caje Moniz, MD, Munro Peacock, MD. (2000). A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis the prevent recurrence of osteoporotic fractures study. The American Journal of Medicine, Volume 109(Issue 4), Pages 267-276. Christopher McMaster, D. L., Claire Keith,Parnaz Aminian,Albert Frauman. (2019). A Machine-Learning Algorithm to Optimise Automated Adverse Drug Reaction Detection from Clinical Coding. Drug Saf, 42(6), 721-725. doi:10.1007/s40264-018-00794-y Chun Yen Lee, Y.-P. P. C. (2019). Machine learning on adverse drug reactions for pharmacovigilance. Drug Discov Today, 24(7), 1332-1343. doi:10.1016/j.drudis.2019.03.003 Dathe, K., Hultzsch, S., Pritchard, L. W., & Schaefer, C. (2019). Risk estimation of fetal adverse effects after short-term second trimester exposure to non-steroidal anti-inflammatory drugs: a literature review. Eur J Clin Pharmacol, 75(10), 1347-1353. doi:10.1007/s00228-019-02712-2 Doherty, M. J. (2009). Algorithms for assessing the probability of an Adverse Drug Reaction. Respiratory Medicine CME, 2(2), 63-67. doi:10.1016/j.rmedc.2009.01.004 Edwards, I. R., & Aronson, J. K. (2000). Adverse drug reactions: definitions, diagnosis, and management. The Lancet, 356(9237), 1255-1259. doi:10.1016/s0140-6736(00)02799-9 EMA. (2012). European Medicines Agency recommends limiting longterm use of calcitonin medicines. Retrieved from EMH. (2020a). Erythromycin: update on known risk of infantile hypertrophic pyloric stenosis. Retrieved from https://www.gov.uk/drug-safety-update/erythromycin-update-on-known-risk-of-infantile-hypertrophic-pyloric-stenosis EMH. (2020b). European Erythromycin: caution required due to cardiac risks (QT interval prolongation); drug interaction with rivaroxaban. Retrieved from https://www.gov.uk/drug-safety-update/erythromycin-caution-required-due-to-cardiac-risks-qt-interval-prolongation-drug-interaction-with-rivaroxaban FDA. (2013). FDA Panel: Long-Used Osteoporosis Drug Too Risky. Retrieved from https://www.webmd.com/osteoporosis/news/20130307/fda-panel-osteoporosis-drug-too-risky FDA. (2020). FDA Warns that Using a Type of Pain and Fever Medication in Second Half of Pregnancy Could Lead to Complications. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-warns-using-type-pain-and-fever-medication-second-half-pregnancy-could-lead-complications Garbade, D. M. J. (2018). Understanding K-means Clustering in Machine Learning. Retrieved from https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1 Harpaz, R., DuMouchel, W., Shah, N. H., Madigan, D., Ryan, P., & Friedman, C. (2012). Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther, 91(6), 1010-1021. doi:10.1038/clpt.2012.50 Iasella, C. J., Johnson, H. J., & Dunn, M. A. (2017). Adverse Drug Reactions: Type A (Intrinsic) or Type B (Idiosyncratic). Clin Liver Dis, 21(1), 73-87. doi:10.1016/j.cld.2016.08.005 ICH. (1995). Clinical Safety Data Management:Definitions and Standards for Expedited Reporting. Imai, S., Takekuma, Y., Kashiwagi, H., Miyai, T., Kobayashi, M., Iseki, K., & Sugawara, M. (2020). Validation of the usefulness of artificial neural networks for risk prediction of adverse drug reactions used for individual patients in clinical practice. PLoS One, 15(7), e0236789. doi:10.1371/journal.pone.0236789 Jason Lazarou, M. B. H. P., MD, PhD; Paul N. Corey, PhD. (1998). Incidence of Adverse Drug Reactions in Hospitalized Patients A Meta-analysis of Prospective Studies. JAMA, Vol 279, No. 15. Jeong, E., Park, N., Choi, Y., Park, R. W., & Yoon, D. (2018). Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals. PLoS One, 13(11), e0207749. doi:10.1371/journal.pone.0207749 Jiawei Han, M. K., Jian Pei. (2011). Data Mining Concepts and Techniques (3rd ed.). Jonathan R. Nebeker, M., MD; Paul Barach, MD, MPH; and Matthew H. Samore, MD. (2004). Clarifying adverse drug events a clinician's guide to terminology documentation and reporting. American College of Physicians, 795-801. Kriegeskorte, N., & Golan, T. (2019). Neural network models and deep learning. Curr Biol, 29(7), R231-R236. doi:10.1016/j.cub.2019.02.034 Liao, P. J., Mao, C. T., Chen, T. L., Deng, S. T., & Hsu, K. H. (2019). Factors associated with adverse drug reaction occurrence and prognosis, and their economic impacts in older inpatients in Taiwan: a nested case-control study. BMJ Open, 9(5), e026771. doi:10.1136/bmjopen-2018-026771 Liu, X., Ma, J., Huang, L., Zhu, W., Yuan, P., Wan, R., & Hong, K. (2017). Fluoroquinolones increase the risk of serious arrhythmias: A systematic review and meta-analysis. Medicine (Baltimore), 96(44), e8273. doi:10.1097/MD.0000000000008273 MedDRA. (2020a). MedDRA Introductory Guide Retrieved from MedDRA. (2020b). Welcome to the ICH MedDRA website. Retrieved from https://www.meddra.org/how-to-use/support-documentation/english/welcome Merel, S. E., & Paauw, D. S. (2017). Common Drug Side Effects and Drug-Drug Interactions in Elderly Adults in Primary Care. J Am Geriatr Soc, 65(7), 1578-1585. doi:10.1111/jgs.14870 Murchison, L., De Coppi, P., & Eaton, S. (2016). Post-natal erythromycin exposure and risk of infantile hypertrophic pyloric stenosis: a systematic review and meta-analysis. Pediatr Surg Int, 32(12), 1147-1152. doi:10.1007/s00383-016-3971-5 Onakpoya, I. J., Heneghan, C. J., & Aronson, J. K. (2016). Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med, 14, 10. doi:10.1186/s12916-016-0553-2 Overman, R. A., Borse, M., & Gourlay, M. L. (2013). Salmon calcitonin use and associated cancer risk. Ann Pharmacother, 47(12), 1675-1684. doi:10.1177/1060028013509233 Patton, K., & Borshoff, D. C. (2018). Adverse drug reactions. Anaesthesia, 73 Suppl 1, 76-84. doi:10.1111/anae.14143 Pham, M., Cheng, F., & Ramachandran, K. (2019). A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches. Drug Saf, 42(6), 743-750. doi:10.1007/s40264-018-00792-0 Ramesh, A. N., Kambhampati, C., Monson, J. R., & Drew, P. J. (2004). Artificial intelligence in medicine. Ann R Coll Surg Engl, 86(5), 334-338. doi:10.1308/147870804290 Robert S. Bresalier, M. D., Robert S. Sandler, M.D., Hui Quan, Ph.D. (2005). Cardiovascular Events Associated with Rofecoxib in a Colorectal Adenoma Chemoprevention Trial. The new england journal of medicine, 1092-1102. Sakaeda, T., Tamon, A., Kadoyama, K., & Okuno, Y. (2013). Data mining of the public version of the FDA Adverse Event Reporting System. Int J Med Sci, 10(7), 796-803. doi:10.7150/ijms.6048 Singh, P., Agrawal, M., Hishikar, R., Joshi, U., Maheshwari, B., & Halwai, A. (2017). Adverse drug reactions at adverse drug reaction monitoring center in Raipur: Analysis of spontaneous reports during 1 year. Indian J Pharmacol, 49(6), 432-437. doi:10.4103/ijp.IJP_781_16 Smith, W. (2013). Adverse drug reactions(allergy-side effect-intolerance. AustRAliAn FAmily PhysiciAn, Vol. 42. Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., & Wang, G. (2018). Data Processing and Text Mining Technologies on Electronic Medical Records: A Review. J Healthc Eng, 2018, 4302425. doi:10.1155/2018/4302425 TaiwanFDA. (2014). Taiwan National Adverse Drug Reactions Reporting System. Retrieved from https://www.fda.gov.tw/tc/siteContent.aspx?sid=4240 TaiwanFDA. (2020). Statistics of adverse drug notifications. Retrieved from https://www.tdrf.org.tw/apply04/ Tan, Y., Hu, Y., Liu, X., Yin, Z., Chen, X. W., & Liu, M. (2016). Improving drug safety: From adverse drug reaction knowledge discovery to clinical implementation. Methods, 110, 14-25. doi:10.1016/j.ymeth.2016.07.023 Tiftikci, M., Ozgur, A., He, Y., & Hur, J. (2019). Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels. BMC Bioinformatics, 20(Suppl 21), 707. doi:10.1186/s12859-019-3195-5 Tripathi, M. (2020). Underfitting and Overfitting in Machine Learning. Data Science Foundation. Usama Fayyad, G. P.-S., and Padhraic Smyth. (1996). From Data Mining to Knowledge Discovery in Databases. American Association for Artificial Intelligence, 17. W. Philip T. James, M. D., D.Sc., Ian D. Caterson, M.D., Ph.D. (2010). Effect of Sibutramine on Cardiovascular Outcomes in Overweight and Obese Subjects. The new england journal of established in 1812 medicine, vol. 363 no. 10, 905-917. Walter, S. R., Day, R. O., Gallego, B., & Westbrook, J. I. (2017). The impact of serious adverse drug reactions: a population-based study of a decade of hospital admissions in New South Wales, Australia. Br J Clin Pharmacol, 83(2), 416-426. doi:10.1111/bcp.13124 WHO. (2002). Safety of medicines: a guide to detecting and reporting adverse drug reactions-why health professionals need to take action.pdf>. WHO. (2016). ATC/DDD Index 2016. Retrieved from https://www.whocc.no/atc_ddd_index/ WHO. (2018). The use of the WHO-UMC system for standardised case causality assessment. Wilke, R. A., Lin, D. W., Roden, D. M., Watkins, P. B., Flockhart, D., Zineh, I., . . . Krauss, R. M. (2007). Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov, 6(11), 904-916. doi:10.1038/nrd2423 Wu, L., Ingle, T., Liu, Z., Zhao-Wong, A., Harris, S., Thakkar, S., . . . Fang, H. (2019). Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA. BMC Bioinformatics, 20(Suppl 2), 97. doi:10.1186/s12859-019-2628-5 Yao, S. H., Tsai, H. T., Lin, W. L., Chen, Y. C., Chou, C., & Lin, H. W. (2019). Predicting the serum digoxin concentrations of infants in the neonatal intensive care unit through an artificial neural network. BMC Pediatr, 19(1), 517. doi:10.1186/s12887-019-1895-7 Zhou, L., & Rupa, A. P. (2018). Categorization and association analysis of risk factors for adverse drug events. Eur J Clin Pharmacol, 74(4), 389-404. doi:10.1007/s00228-017-2373-5
|