|
[1] International Agency for Research on Cancer. (2023). Data source: GLOBOCAN 2020. Graph production: Global Cancer Observatory. Retrieved from https://gco.iarc.fr/. [2]International Agency for Research on Cancer. (2020, November). Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Retrieved from https://www.iarc.who.int .. [3]Taiwan Cancer Registry. (2023). Top 10 cancers in Taiwan, 2020. Retrieved from https://twcr.tw/wp-content/uploads/2023/04/Top-10-cancers-in-Taiwan-2020.pdf . [4]De Angelis, R., et al. (2014). Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study. Lancet Oncology, 15(1), 23-34. [5]Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. [6]Arif, M., Schoots, I. G., Tovar, J. C., Bangma, C. H., Krestin, G. P., Roobol, M. J., Niessen, W., & Veenland, J. F. (2020). Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. European Radiology, 30, 6582–6592. https://doi.org/10.1007/s00330-020-07008-z [7]Aldoj, N., Lukas, S., Dewey, M., & Penzkofer, T. (2020). Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network. European Radiology, 30, 1243–1253. https://doi.org/10.1007/s00330-019-06417-z [8]Zhuang, H., Chatterjee, A., Fan, X., Qi, S., Qian, W., & He, D. (2023). A radiomics based method for prediction of prostate cancer Gleason score using enlarged region of interest. BMC Medical Imaging, 23, 205. https://doi.org/10.1186/s12880-023-01167-3 [9]Zhong, X., Cao, R., Shakeri, S., Scalzo, F., Lee, Y., Enzmann, D. R., Wu, H. H., Raman, S. S., & Sung, K. (2019). Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdominal Radiology, 44, 2030–2039. https://doi.org/10.1007/s00261-018-1824-5 [10]Kuroiwa, K., Uchino, H., Yokomizo, A., & Naito, S. (2009). Impact of reporting rules of biopsy Gleason score for prostate cancer. Journal of Clinical Pathology, 62(3), 260-263. [11]Karimi, D., Nir, G., Fazli, L., Black, P. C., Goldenberg, L., & Salcudean, S. E. (2020). Deep learning-based Gleason grading of prostate cancer from histopathology images—Role of multiscale decision aggregation and data augmentation. IEEE Journal of Biomedical and Health Informatics, 24(5). [12]Müller, D., Meyer, P., Rentschler, L., Manz, R., Bäcker, J., Cramer, S., Wengenmayr, C., Märkl, B., Huss, R., Soto-Rey, I., & Raffler, J. (2024). DeepGleason: a System for Automated Gleason Grading of Prostate Cancer using Deep Neural Networks. arXiv preprint arXiv:2403.16678. https://doi.org/10.48550/arXiv.2403.16678 [13]Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., Clement, E., Cinato, M., Le Gonidec, S., Guérard, A., Lehuédé, C., Garandeau, D., Nieto, L., Renaud-Gabardos, E., Prats, A.-C., Valet, P., Malavaud, B., & Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular Cancer Research, 17(3), 821-835. https://doi.org/10.1158/1541-7786.MCR-18-0748 [14]Blue Ridge Radiation Oncology.. Prostate cancer screening. Retrieved from https://blueridgeradonc.com/cancers-we-treat/prostate-cancer/prostate-cancer-screening/ [15]Mehta, P., Antonelli, M., Ahmed, H. U., Emberton, M., Punwani, S., & Ourselin, S. (2021). Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework. Medical Image Analysis, 73, 102153. [16]Zhang, H., Ji, J., Liu, Z., Lu, H., Qian, C., Wei, C., Chen, S., Lu, W., Wang, C., Xu, H., Xu, Y., Chen, X., He, X., Wang, Z., Zhao, X., Cheng, W., Chen, X., Pang, G., Yu, G., Gu, Y., Jiang, K., Xu, B., Chen, J., Xu, B., Wei, X., Chen, M., Chen, R., Cheng, J., & Wang, F. (2023). Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: A multicenter study. BMC Medicine, 21, 270. https://doi.org/10.1186/s12916-023-02964-x. [17]Chen, Z., Zhang, J., Jin, D., Wei, X., Qiu, F., Wang, X., Zhao, X., Pu, J., Hou, J., Huang, Y., & Huang, C. (2023). A novel clinically significant prostate cancer prediction system with multiparametric MRI and PSA: P.Z.A. score. BMC Cancer, 23, 1138. https://doi.org/10.1186/s12885-023-11306-2. [18]Chen, G., Dai, X., Zhang, M., Tian, Z., Jin, X., Mei, K., Huang, H., & Wu, Z. (2023). Machine learning-based prediction model and visual interpretation for prostate cancer. BMC Urology, 23, 164. https://doi.org/10.1186/s12894-023-01316-4. [19]Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., Clement, E., Cinato, M., Le Gonidec, S., Guérard, A., Lehuédé, C., Garandeau, D., Nieto, L., Renaud-Gabardos, E., Prats, A.-C., Valet, P., Malavaud, B., & Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular Cancer Research, 17(3), 821-835. https://doi.org/10.1158/1541-7786.MCR-18-0748. [20]Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M. J., Freitas, M., Fraga, A., Príncipe, P., Lobato, C., Lobo, F., Morais, A., Silva, V., Sanches-Magalhães, J., Oliveira, J., Pina, F., Mota-Pinto, A., Lopes, C., & Medeiros, R. (2012). Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. Journal of Experimental & Clinical Cancer Research, 31, 32. http://www.jeccr.com/content/31/1/32. [21]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778. [22]Álvarez-Artime, A., García-Soler, B., Sainz, R. M., & Mayo, J. C. (2021). Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. International Journal of Molecular Sciences, 22(11), 5560. https://doi.org/10.3390/ijms22115560. [23]Saha, A., Hamilton-Reeves, J., & DiGiovanni, J. (2022). White Adipose Tissue Derived Factors and Prostate Cancer Progression: Mechanisms and Targets for Interventions. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-022-10056-0. [24]Chu, K., Bos, S. A., Gill, C. M., Torriani, M., & Bredella, M. A. (2019). Brown adipose tissue and cancer progression. Skeletal Radiology. https://doi.org/10.1007/s00256-019-03322-w. [25]Chen, Y.-C. I., Cypess, A. M., Chen, Y.-C., Palmer, M., Kolodny, G., Kahn, C. R., & Kwong, K. K. (2013). Measurement of Human Brown Adipose Tissue Volume and Activity Using Anatomic MR Imaging and Functional MR Imaging. The Journal of Nuclear Medicine, 54(9), 1584–1587. https://doi.org/10.2967/jnumed.112.117275.
|